1
|
Lee SW, Lim JM, Jang TH, Park JH, Seralathan KK, Oh BT. Lactiplantibacillus sp. D10-2: potential bacteria for eliminating bisphenol A and reducing BpA-induced lipid accumulation. Int Microbiol 2024; 27:707-718. [PMID: 37659056 DOI: 10.1007/s10123-023-00425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Bisphenol A (BpA) is an endocrine-disrupting substance commonly found in plastics and resins. It is reported that BpA exposure induces lipid accumulation in humans, similar to obesogenic compounds. The main objective of this study is to investigate the removal of BpA using Lactiplantibacillus sp. D10-2, and to examine its potential for reducing BpA-induced lipid accumulation in 3T3-L1 cell line model. The heat-dried cells of Lactiplantibacillus sp. D10-2 showed 69.7% removal efficiency for initial BpA concentration of 10 μg/mL, which was 30.5% higher than the live cells. The absence of metabolites or intermediates in BpA removal studies indicates that the Lactiplantibacillus sp. D10-2 strain removed BpA by adsorption process. The hydrophobic interactions of heat-dried Lactiplantibacillus sp. D10-2 cells were observed to be higher with 33.7% compared to live cells (15.0%), suggesting a stronger ability to bind with BpA. Although the BpA binding onto Lactiplantibacillus sp. D10-2 was not affected by pH, it was confirmed that as the temperature increases, the binding ability got decreased due to mass transfer and diffusion of BpA molecules. Treatment with Lactiplantibacillus sp. D10-2 (0.1, 0.25, 0.5, 1%) reduced lipid accumulation by 61.7, 58.0, 52.7 and 60.4% in 3T3-L1 cells exposed with BpA. In addition, it was confirmed that Lactiplantibacillus sp. D10-2 treatment suppressed the protein expression levels of lipogenesis-related PPARγ and C/EBPα in 3T3-L1 cells. The results of the study suggest that the Lactiplantibacillus sp. D10-2 strain can remove BpA and reduce BpA-accelerated lipid accumulation in 3T3-L1 cells.
Collapse
Affiliation(s)
- Se-Won Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Jeong-Muk Lim
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Tae-Hu Jang
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea.
| |
Collapse
|
2
|
Liu Y, Xia L, Galani Yamdeu JH, Gong YY, Orfila C. Adsorption of aflatoxin B 1 to corn by-products. Food Chem 2024; 440:138212. [PMID: 38150899 DOI: 10.1016/j.foodchem.2023.138212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
The adsorption of aflatoxin B1 (AFB1) to natural fiber materials prepared from corn by-products was investigated in this study. The results showed that corn cob powder (CCP) dose, particle size, time (0.25-24 h), temperature (4, 20, 37, 50 and 100 °C) and pH (2-8), had significant effects on adsorption. The maximum adsorption (98%) was with particles 500-355 µm in size at 20 °C for 8 h, at the dose of 50 mg mL-1. The adsorption fitted pseudo-second-order model and Langmuir isotherm well. Besides, CCP had a higher adsorption capacity to AFB1 than any single cell wall components of corn, which indicated that capillary effect happened in cell wall might be the main reason for adsorption. The results also suggested that CCP could reduce AFB1 content from both liquid and solid food matrixes. Briefly, CCP displayed promising properties that could be developed in nature-based practical applications for food aflatoxin decontamination.
Collapse
Affiliation(s)
- Yue Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Nutritional Science and Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK.
| | - Lei Xia
- Nutritional Science and Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Joseph Hubert Galani Yamdeu
- Nutritional Science and Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK; Section of Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, UK
| | - Yun Yun Gong
- Nutritional Science and Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Caroline Orfila
- Nutritional Science and Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK.
| |
Collapse
|
3
|
Ji C, Sun X, Fang Y, Li P. Determination of Aflatoxin B 1 in Grains by Aptamer Affinity Column Enrichment and Purification Coupled with High Performance Liquid Chromatography Detection. Foods 2024; 13:640. [PMID: 38472753 DOI: 10.3390/foods13050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a highly teratogenic and carcinogenic secondary metabolite produced by Aspergillus. It is commonly detected in agricultural products such as cereals, peanuts, corn, and feed. Grains have a complex composition. These complex components severely interfere with the effective extraction and separation of AFB1, and also cause problems such as matrix interference and instrument damage, thus posing a great challenge in the accurate analysis of AFB1. In this study, an aptamer affinity column for AFB1 analysis (AFB1-AAC) was prepared for the enrichment and purification of AFB1 from grain samples. AFB1-AAC with an AFB1-specific aptamer as the recognition element exhibited high affinity and specificity for AFB1. Grain samples were enriched and purified by AFB1-AAC, and subsequently analyzed by high performance liquid chromatography with post-column photochemical derivatization-fluorescence detection (HPLC-PCD-FLD). The average recoveries of AFB1 ranged from 88.7% to 99.1%, with relative standard deviations (RSDs) of 1.4-5.6% (n = 3) at the spiked levels of 5.0-20.0 μg kg-1. The limit of detection (LOD) for AFB1 (0.02 μg kg-1) was much below the maximum residue limits (MRLs) for AFB1. This novel method can be applied to the determination of AFB1 residues in peanut, corn, and rice.
Collapse
Affiliation(s)
- Cong Ji
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinyang Sun
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Peng Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
4
|
Hashemi SMB, Roohi R, Abedi E. Thermodynamics, kinetics, and computational fluid dynamics modeling of Escherichia coli and Salmonella Typhi inactivation during the thermosonication process of celery juice. ULTRASONICS SONOCHEMISTRY 2024; 104:106820. [PMID: 38401356 PMCID: PMC10906503 DOI: 10.1016/j.ultsonch.2024.106820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
In this study, thermosonication (37 KHz, 300 W; 50, 60, and 70 °C) of celery juice was performed to inactivate Escherichia coli and Salmonella Typhi in 6 min. The inactivation of pathogens and the process were modeled using mathematical, thermodynamic, and computational fluid dynamics models. The findings indicated that the distribution of power dissipation density was not uniform across the entire domain, including the beaker area, with a maximum value of 27.8 × 103 W/m3. At lower temperatures, E. coli showed a 9.4 % higher resistance to sonication, while at higher temperatures, S. Typhi had a 5.4 % higher durability than E. coli. Increasing the temperature decreased the maximum inactivation rate of both S. Typhi and E. coli by 15.5 % and 20.5 % respectively, while increasing the thermal level by 20 °C reduced the log time to achieve the maximum inactivation rate by 20.3 % and 34.9 % for S. Typhi and E. coli respectively, highlighting the stronger effect of sonication at higher temperatures. According to the results, the positive magnitudes of ΔG were observed in both E. coli and S. Typhi, indicating a similar range of variations. Additionally, the magnitude of ΔG increased by approximately 5.2 to 5.5 % for both microorganisms which suggested the inactivation process was not spontaneous.
Collapse
Affiliation(s)
| | - Reza Roohi
- Department of Mechanical Engineering, Faculty of Engineering, Fasa University, Fasa, Iran.
| | - Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| |
Collapse
|
5
|
Wang Y, Jiang L, Zhang Y, Ran R, Meng X, Liu S. Research advances in the degradation of aflatoxin by lactic acid bacteria. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230029. [PMID: 37901116 PMCID: PMC10601132 DOI: 10.1590/1678-9199-jvatitd-2023-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites that often contaminate food and animal feed, causing huge economic losses and serious health hazards. Aflatoxin contamination has become a major concern worldwide. Biological methods have been used to reduce aflatoxins in food and feed by inhibiting toxin production and detoxification. Among biological methods, lactic acid bacteria are of significant interest because of their safety, efficiency, and environmental friendliness. This study aimed to review the mechanisms by which lactic acid bacteria degrade aflatoxins and the factors that influence their degradation efficiency, including the action of the lactic acid bacteria themselves (cell wall adsorption) and the antifungal metabolites produced by the lactic acid bacteria. The current applications of lactic acid bacteria to food and feed were also reviewed. This comprehensive analysis provided insight into the binding mechanisms between lactic acid bacteria and aflatoxins, facilitating the practical applications of lactic acid bacteria to food and agriculture.
Collapse
Affiliation(s)
- Yuxi Wang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ran Ran
- School of Light Industry and Materials, Chengdu Textile College, Chengdu, China
| | - Xiao Meng
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shukun Liu
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Ikehata M, Konnai S, Okagawa T, Abe K, Honma M, Kitamura T, Maekawa N, Suzuki Y, Murata S, Ohashi K. In vitro evaluation of Lactiplantibacillus plantarum HOKKAIDO strain, effective lactic acid bacteria for calf diarrhea. Front Vet Sci 2023; 10:1145445. [PMID: 37089407 PMCID: PMC10113454 DOI: 10.3389/fvets.2023.1145445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Calf diarrhea adversely affects growth and sometimes results in mortality, leading to severe economic losses to the cattle industry. Antibiotics are useful in the treatment against bacterial diarrhea, but not against viral, protozoan, and antibiotic-resistant bacterial diarrhea. Therefore, there are growing requirements for a novel control method for calf diarrhea. Probiotics have been considered promising candidates for preventive and supportive therapy for calf diarrhea for many years. A recent study has revealed that Lactiplantibacillus plantarum HOKKAIDO strain (Lp-HKD) reduces intestinal pathology and the severity of diarrhea in bovine rotavirus (BRV)-infected calves. Lp-HKD is known to enhance the function of human immune cells and expected to be used as probiotics for humans. Therefore, it is hypothesized that Lp-HKD modulates antiviral immune response in cattle and provide the clinical benefits in BRV-infected calves. However, the detailed mechanism of Lp-HKD-induced immunomodulation remains unknown. Thus, this study aimed to elucidate the immunomodulatory and antiviral effects of Lp-HKD in cattle. Cultivation assay of bovine peripheral blood mononuclear cells (PBMCs) showed that live and heat-killed Lp-HKD stimulates the production of interleukin-1β (IL-1β), IL-6, IL-10, and interferon-γ (IFN-γ) from PBMCs. Stimulation by heat-killed Lp-HKD yielded stronger cytokine production than stimulation by the live Lp-HKD. Additionally, CD14+ monocytes were identified as major producers of IL-1β, IL-6, and IL-10 under Lp-HKD stimulation; however, IFN-γ was mainly produced from immune cells other than CD14+ monocytes. Depletion of CD14+ monocytes from the PBMCs cultivation strongly decreased cytokine production induced by heat-killed Lp-HKD. The inhibition of toll-like receptor (TLR) 2/4 signaling decreased IL-1β and IL-6 production induced by live Lp-HKD and IL-1β, IL-6, and IFN-γ production induced by heat-killed Lp-HKD. Furthermore, live or heat-killed Lp-HKD also activated T cells and their production of IFN-γ and tumor necrosis factor-α. Then, culture supernatants of bovine PBMCs treated with heat-killed Lp-HKD demonstrated antiviral effects against BRV in vitro. In conclusion, this study demonstrated that Lp-HKD activates the functions of bovine immune cells via TLR2/4 signaling and exerts an antiviral effect against BRV through the induction of antiviral cytokines. Lp-HKD could be useful for the prevention and treatment of calf diarrhea through its immune activating effect.
Collapse
Affiliation(s)
- Mari Ikehata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- *Correspondence: Satoru Konnai
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Abe
- Hokkaido Research Station, Snow Brand Seed Co., Ltd., Naganuma, Japan
| | - Mitsuru Honma
- Hokkaido Research Station, Snow Brand Seed Co., Ltd., Naganuma, Japan
| | - Toru Kitamura
- Hokkaido Research Station, Snow Brand Seed Co., Ltd., Naganuma, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Xiao L, Yang Y, Han S, Rui X, Ma K, Zhang C, Wang G, Li W. Effects of genes required for exopolysaccharides biosynthesis in Lacticaseibacillus paracasei S-NB on cell surface characteristics and probiotic properties. Int J Biol Macromol 2022; 224:292-305. [DOI: 10.1016/j.ijbiomac.2022.10.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
8
|
Aziz T, Naveed M, Sarwar A, Makhdoom SI, Mughal MS, Ali U, Yang Z, Shahzad M, Sameeh MY, Alruways MW, Dablool AS, Almalki AA, Alamri AS, Alhomrani M. Functional Annotation of Lactiplantibacillus plantarum 13-3 as a Potential Starter Probiotic Involved in the Food Safety of Fermented Products. Molecules 2022; 27:molecules27175399. [PMID: 36080167 PMCID: PMC9458025 DOI: 10.3390/molecules27175399] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The important role of Lactiplantibacillus plantarum strains in improving the human mucosal and systemic immunity, preventing non-steroidal anti-provocative drug-induced reduction in T-regulatory cells, and as probiotic starter cultures in food processing has motivated in-depth molecular and genomic research of these strains. The current study, building on this research concept, reveals the importance of Lactiplantibacillus plantarum 13-3 as a potential probiotic and bacteriocin-producing strain that helps in improving the condition of the human digestive system and thus enhances the immunity of the living beings via various extracellular proteins and exopolysaccharides. We have assessed the stability and quality of the L. plantarum 13-3 genome through de novo assembly and annotation through FAST-QC and RAST, respectively. The probiotic-producing components, secondary metabolites, phage prediction sites, pathogenicity and carbohydrate-producing enzymes in the genome of L. plantarum 13-3 have also been analyzed computationally. This study reveals that L. plantarum 13-3 is nonpathogenic with 218 subsystems and 32,918 qualities and five classes of sugars with several important functions. Two phage hit sites have been identified in the strain. Cyclic lactone autoinducer, terpenes, T3PKS, and RiPP-like gene clusters have also been identified in the strain evidencing its role in food processing. Combined, the non-pathogenicity and the food-processing ability of this strain have rendered this strain industrially important. The subsystem and qualities characterization provides a starting point to investigate the strain’s healthcare-related applications as well.
Collapse
Affiliation(s)
- Tariq Aziz
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China
- Pak-Austria Fachhochschule—Institute of Applied Sciences and Technology, Mang, Haripur 22621, Pakistan
| | - Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Abid Sarwar
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China
| | - Syeda Izma Makhdoom
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Muhammad Saad Mughal
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Urooj Ali
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China
- Correspondence:
| | - Muhammad Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25124, Pakistan
| | - Manal Y. Sameeh
- Chemistry Department, Faculty of Applied Sciences, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia
| | - Mashael W. Alruways
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 15273, Saudi Arabia
| | - Anas S. Dablool
- Department of Public Health, Health Sciences College Al-Leith, Umm Al-Qura University, Makkah al-Mukarramah 24382, Saudi Arabia
| | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
9
|
Determining the adsorption capacity and stability of Aflatoxin B1, Ochratoxin A, and Zearalenon on single and co-culture L. acidophilus and L. rhamnosus surfaces. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Smaoui S, Agriopoulou S, D'Amore T, Tavares L, Mousavi Khaneghah A. The control of Fusarium growth and decontamination of produced mycotoxins by lactic acid bacteria. Crit Rev Food Sci Nutr 2022; 63:11125-11152. [PMID: 35708071 DOI: 10.1080/10408398.2022.2087594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global crop and food contamination with mycotoxins are one of the primary worldwide concerns, while there are several restrictions regarding approaching conventional physical and chemical mycotoxins decontamination methods due to nutrition loss, sensory attribute reduction in foods, chemical residual, inconvenient operation, high cost of equipment, and high energy consumption of some methods. In this regard, the overarching challenges of mycotoxin contamination in food and food crops require the development of biological decontamination strategies. Using certain lactic acid bacteria (LAB) as generally recognized safe (GRAS) compounds is one of the most effective alternatives due to their potential to release antifungal metabolites against various fungal factors species. This review highlights the potential applications of LAB as biodetoxificant agents and summarizes their decontamination activities against Fusarium growth and Fusarium mycotoxins released into food/feed. Firstly, the occurrence of Fusarium and the instrumental and bioanalytical methods for the analysis of mycotoxins were in-depth discussed. Upgraded knowledge on the biosynthesis pathway of mycotoxins produced by Fusarium offers new insightful ideas clarifying the function of these secondary metabolites. Moreover, the characterization of LAB metabolites and their impact on the decontamination of the mycotoxin from Fusarium, besides the main mechanisms of mycotoxin decontamination, are covered. While the thematic growth inhibition of Fusarium and decontamination of their mycotoxin by LAB is very complex, approaching certain lactic acid bacteria (LAB) is worth deeper investigations.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, Kalamata, Greece
| | - Teresa D'Amore
- Chemistry Department, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Foggia, Italy
| | - Loleny Tavares
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, CEP, Brazil
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|