1
|
Xu C, Guo J, Chang B, Zhang Y, Tan Z, Tian Z, Duan X, Ma J, Jiang Z, Hou J. Design of probiotic delivery systems and their therapeutic effects on targeted tissues. J Control Release 2024; 375:20-46. [PMID: 39214316 DOI: 10.1016/j.jconrel.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The microbiota at different sites in the body is closely related to disease. The intake of probiotics is an effective strategy to alleviate diseases and be adjuvant in their treatment. However, probiotics may suffer from harsh environments and colonization resistance, making it difficult to maintain a sufficient number of live probiotics to reach the target sites and exert their original probiotic effects. Encapsulation of probiotics is an effective strategy. Therefore, probiotic delivery systems, as effective methods, have been continuously developed and innovated to ensure that probiotics are effectively delivered to the targeted site. In this review, initially, the design of probiotic delivery systems is reviewed from four aspects: probiotic characteristics, processing technologies, cell-derived wall materials, and interactions between wall materials. Subsequently, the review focuses on the effects of probiotic delivery systems that target four main microbial colonization sites: the oral cavity, skin, intestine, and vagina, as well as disease sites such as tumors. Finally, this review also discusses the safety concerns of probiotic delivery systems in the treatment of disease and the challenges and limitations of implementing this method in clinical studies. It is necessary to conduct more clinical studies to evaluate the effectiveness of different probiotic delivery systems in the treatment of diseases.
Collapse
Affiliation(s)
- Cong Xu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Jiahui Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Baoyue Chang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Yiming Zhang
- Department of Psychiatry and Mental Health, Dalian Medical University, Dalian 116044, China
| | - Zhongmei Tan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Zihao Tian
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Xiaolei Duan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| |
Collapse
|
2
|
Chen D, Guo C, Ren C, Xia Z, Xu H, Qu H, Wa Y, Guan C, Zhang C, Qian J, Gu R. Screening of Lactiplantibacillus plantarum 67 with Strong Adhesion to Caco-2 Cells and the Effects of Protective Agents on Its Adhesion Ability during Vacuum Freeze Drying. Foods 2023; 12:3604. [PMID: 37835257 PMCID: PMC10572606 DOI: 10.3390/foods12193604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Adhesion to the intestinal tract provides the foundation for Lactobacillus to exert its benefits. Vacuum freeze-drying (VFD) is currently one of the main processing methods for Lactobacillus products. Therefore, the effects of VFD on the adhesion and survival of Lactiplantibacillus plantarum 67 were investigated in this study. The results show that L. plantarum 67 exhibits remarkable tolerance following successive exposure to simulated saliva, gastric juice and intestinal juice, and also has a strong adhesion ability to Caco-2 cells. The adhesion and survival rates of L. plantarum 67 significantly decreased after VFD in phosphate-buffered saline (PBS), whereas they significantly increased in protective agents (PAs) (p < 0.05). Scanning electron microscope observations show that L. plantarum 67 aggregated more to Caco-2 cells in PAs than in PBS, and its shape and size were protected. Proteomics detection findings indicated that differentially expressed proteins (DEPs) related to adhesins and vitality and their pathways in L. plantarum 67 were significantly affected by VFD (p < 0.05). However, the expression of DEPs (such as cold shock protein, cell surface protein, adherence protein, chitin-binding domain and extracellular transglycosylase, membrane-bound protein) was improved by PAs. Compared with PBS, the PAs significantly adjusted the phosphotransferase system and amino sugar and nucleotide sugar metabolism pathways (p < 0.05). VFD decreased the adhesion and vitality of L. plantarum 67, while the PAs could exert protective effects by regulating proteins and pathways related to adhesion and vitality.
Collapse
Affiliation(s)
- Dawei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
- Jiangsu Yuhang Food Technology Co., Ltd., Yancheng 224000, China
| | - Congcong Guo
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Chenyu Ren
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Zihan Xia
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Haiyan Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Hengxian Qu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Yunchao Wa
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Chengran Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Chenchen Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Jianya Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| |
Collapse
|
3
|
Xu J, Zhao N, Meng X, Zhang T, Li J, Dong H, Wei X, Fan M. Contribution of amino acids to Alicyclobacillus acidoterrestris DSM 3922T resistance towards acid stress. Food Microbiol 2023; 113:104273. [PMID: 37098432 DOI: 10.1016/j.fm.2023.104273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
Spoilage of juice and beverages by a thermo-acidophilic bacterium, Alicyclobacillus acidoterrestris, has been considered to be a major and widespread concern for juice industry. Acid-resistant property of A. acidoterrestris supports its survival and multiplication in acidic juice and challenges the development of corresponding control measures. In this study, intracellular amino acid differences caused by acid stress (pH 3.0, 1 h) were determined by targeted metabolomics. The effect of exogenous amino acids on acid resistance of A. acidoterrestris and the related mechanisms were also investigated. The results showed that acid stress affected the amino acid metabolism of A. acidoterrestris, and the selected glutamate, arginine, and lysine contributed to its survival under acid stress. Exogenous glutamate, arginine, and lysine significantly increased the intracellular pH and ATP level, alleviated cell membrane damage, reduced surface roughness, and suppressed deformation caused by acid stress. Additionally, the up-regulated gadA and speA genes and the enhanced enzymatic activity confirmed that glutamate and arginine decarboxylase systems played a crucial role in maintaining pH homeostasis of A. acidoterrestris under acid stress. Our research reveals an important factor contributing to acid resistance of A. acidoterrestris, which provides an alternative target for effectively controlling this contaminant in fruit juices.
Collapse
Affiliation(s)
- Junnan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuemei Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huayu Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Effects of different pre-freezing temperatures on the freeze-drying survival rate and stability during room temperature storage of Lactiplantibacillus plantarum LIP-1. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Effects of amino acid composition of yeast extract on the microbiota and aroma quality of fermented soy sauce. Food Chem 2022; 393:133289. [PMID: 35689918 DOI: 10.1016/j.foodchem.2022.133289] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022]
Abstract
Yeast extracts, of which amino acids are the main component, can be directly applied to improve the flavor of final soy sauce. In this study, the potential of commercial yeast extracts was explored from amino acid approach to enhance the flavor quality of soy sauce by shaping the core fermentation microbiota. Alkaline and neutral amino acids favored the competitive benefits of flavor-producing bacteria, while acidic amino acids promoted the stress resistance of the fermentation microbiota, especially the abundance of Lactobacillus, which increased to 18.03-23.78% and became the predominant microbiota. The mass ratio of neutral-nonpolar: neutral-polar: acidic: alkaline amino acids was 40: 18: 27: 15, which provided the optimal improvement of soy sauce aroma. The formulation and activated the metabolic pathways of 3-methyl-1-butyraldehyde, 3-methyl-1-butanol and 2-methyl-1-propanol through Leu and Ile, resulting in a 52.6% increase in malt-like aroma. This study provides a new idea for the regulation of soy sauce fermentation.
Collapse
|