1
|
Li Z, Zhang W, Abubaker MA, Shu Q, Liu Y. In silico identification and experimental validation of two types of angiotensin-converting enzyme (ACE) and xanthine oxidase (XO) milk inhibitory peptides. Food Chem 2024; 464:141864. [PMID: 39504900 DOI: 10.1016/j.foodchem.2024.141864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Bioactive peptides have received significant attention due to their natural origin, low toxicity, and targeting specificity in the past decade. This study identified highly active ACE/XO inhibitors using molecular simulation and online databases and validated their in vitro antioxidant activity and the mechanisms of molecular interactions. According to computer predictions, Asp-Gly-Gly (DGG) and Asp-Gly-Met (DGGM) were identified as potential hydrolysates of common gastrointestinal peptidases with well water-soluble, non-toxic, and non-allergenic. Fourier transform infrared spectroscopy showed that the two peptides altered the enzyme's secondary structure, decreasing α-helix content by about 13 %, along with increasing β-sheet, randam coli, and β-turns content. Molecular docking and molecular dynamics simulations showed that hydrogen bonding and electrostatic interactions caused DGG and DGGM to form stable and dense complexes with the two enzymes. This study provides a new way for economical and efficient screening of new ACE and XO inhibitory peptides from natural proteins.
Collapse
Affiliation(s)
- Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Wenhua Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Qin Shu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
2
|
Dávid CZ, Kúsz N, Agbadua OG, Berkecz R, Kincses A, Spengler G, Hunyadi A, Hohmann J, Vasas A. Phytochemical Investigation of Carex praecox Schreb. and ACE-Inhibitory Activity of Oligomer Stilbenes of the Plant. Molecules 2024; 29:3427. [PMID: 39065005 PMCID: PMC11280411 DOI: 10.3390/molecules29143427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Phenolic compounds are the main special metabolites of Cyperaceae species from phytochemical, pharmacological, and chemotaxonomical points of view. The present study focused on the isolation, structure determination, and pharmacological investigation of constituents from Carex praecox. Twenty-six compounds, including lignans, stilbenes, flavonoids, megastigmanes, chromenes, and phenylpropanoids, were identified from the methanol extract of the plant. Five of these compounds, namely, carexines A-E, are previously undescribed natural products. All compounds were isolated for the first time from C. praecox. The ACE-inhibitory activity of seven stilbenoid compounds was tested, and (-)-hopeaphenol proved to be the most active (IC50 7.7 ± 0.9 μM). The enzyme-kinetic studies revealed a mixed-type inhibition; therefore, domain-specific studies were also conducted. The in silico docking of (-)-hopeaphenol to the ACE affirmed some favorable interactions. In addition, the antiproliferative and antibacterial effects of some compounds were also evaluated.
Collapse
Affiliation(s)
- Csilla Zsuzsanna Dávid
- Department of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (C.Z.D.); (N.K.); (O.G.A.); (A.K.); (A.H.); (J.H.)
| | - Norbert Kúsz
- Department of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (C.Z.D.); (N.K.); (O.G.A.); (A.K.); (A.H.); (J.H.)
| | - Orinamhe Godwin Agbadua
- Department of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (C.Z.D.); (N.K.); (O.G.A.); (A.K.); (A.H.); (J.H.)
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, 6720 Szeged, Hungary;
| | - Annamária Kincses
- Department of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (C.Z.D.); (N.K.); (O.G.A.); (A.K.); (A.H.); (J.H.)
- HUN-REN-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary;
| | - Attila Hunyadi
- Department of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (C.Z.D.); (N.K.); (O.G.A.); (A.K.); (A.H.); (J.H.)
- HUN-REN-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Judit Hohmann
- Department of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (C.Z.D.); (N.K.); (O.G.A.); (A.K.); (A.H.); (J.H.)
- HUN-REN-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Andrea Vasas
- Department of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (C.Z.D.); (N.K.); (O.G.A.); (A.K.); (A.H.); (J.H.)
- HUN-REN-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| |
Collapse
|
3
|
Liao P, Liu H, Sun X, Zhang X, Zhang M, Wang X, Chen J. A novel ACE inhibitory peptide from Pelodiscus sinensis Wiegmann meat water-soluble protein hydrolysate. Amino Acids 2024; 56:40. [PMID: 38847939 DOI: 10.1007/s00726-024-03399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/28/2024] [Indexed: 11/01/2024]
Abstract
Pelodiscus sinensis meat is a nutritional food and tonic with angiotensin-converting enzyme (ACE) inhibitory activities. To identify the bioactive substances responsible, several bioinformatics methods were integrated to enable a virtual screening for bioactive peptides in proteins identified within a water-soluble protein fraction of Pelodiscus sinensis meat by Shotgun proteomics. The peptides were generated from the identified proteins by in silico proteolysis using six proteases. A comparison of the numbers of proteins suitable for digestion with each enzyme and the iBAQ (intensity-based absolute quantification) values for these proteins revealed that bromelain and papain were the most suitable proteases for this sample. Next, the water solubility, toxicity, and ADMET (absorption/distribution/metabolism/excretion/toxicity) properties of these peptides were evaluated in silico. Finally, a novel ACE inhibitory peptide IEWEF with an IC50 value of 41.33 µM was identified. The activity of the synthesized peptide was verified in vitro, and it was shown to be a non-competitive ACE inhibitor. Molecular docking revealed that IEWEF could tightly bind to C-ACE, and N-ACE with energies less than 0 kJ mol-1, and the peptide IEWEF can form hydrogen bonds with C-ACE and N-ACE respectively. These results provide evidence that bioactive peptides in the water-soluble protein fraction account for (at least) some of the ACE inhibitory activities observed in Pelodiscus sinensis meat. Furthermore, our research provides a workflow for the efficient identification of novel ACE inhibitory peptides from complex protein mixtures.
Collapse
Affiliation(s)
- Pengying Liao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Huayu Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Xueqin Sun
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Xinrui Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Miao Zhang
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Xianyou Wang
- School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China.
| | - Jun Chen
- Teaching Experiment and Training Centre, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
4
|
Li W, Chen W, Wang J, Zhang Z, Wu D, Liu P, Li Z, Ma H, Yang Y. Revealing the ACE receptor binding properties and interaction mechanisms of salty oligopeptides from Stropharia rugosoannulata mushroom by molecular simulation and antihypertensive evaluation. Food Funct 2024; 15:5527-5538. [PMID: 38700280 DOI: 10.1039/d4fo00596a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The salty oligopeptides from Stropharia rugosoannulata have been proven to be potential ACE inhibitors. To investigate the ACE receptor binding properties and interaction mechanisms of salty oligopeptides, the molecular interaction, dynamics simulation, and antihypertensive evaluation cross-validation strategy were employed to reveal the oligopeptides' binding reactions and modes with the ACE receptor. Single oligopeptide (ESPERPFL, KSWDDFFTR) had exothermic and specific binding reactions with the ACE receptor, driven by hydrogen bonds and van der Waals forces. The coexistence of the multiple oligopeptide molecules did not produce the apparent ACE receptor competition binding reactions. The molecular dynamics simulation verified that the two oligopeptides disturbed the ACE receptor's different residue regions. Both oligopeptides could form stable complexes with the ACE receptor. Based on the classification of 50 oligopeptides' binding modes, ESPERPFL and KSWDDFFTR belonged to different classes, and their receptor binding modes and sites complemented, resulting in a potential synergistic effect on ACE inhibition. The antihypertensive effect of KSWDDFFTR and its distribution in the body were evaluated using SHR rats orally and ICR mice by tail vein injection, and KSWDDFFTR had antihypertensive effects within 8 h. The study provides a theoretical basis for understanding salty oligopeptides' ACE receptor binding mechanism and their antihypertensive effects.
Collapse
Affiliation(s)
- Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| | - Haile Ma
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| |
Collapse
|
5
|
Gu S, Yu J, Du L, Zhang D, Zhao L, Xie J. Characterization, Semirational Design for pH Robustness, and the Application in Bioactive Peptide Production of a X-Prolyl Dipeptidyl Aminopeptidase from Lactococcus lactis MY-3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7279-7290. [PMID: 38519413 DOI: 10.1021/acs.jafc.4c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
PepXLcMY-3, an X-prolyl dipeptidyl aminopeptidase derived from Lactobacillus lactis MY-3, was screened and recombinantly expressed in Escherichia coli. The enzyme could exhibit about 40% activity within the pH range of 6.0-10. To further improve the pH robustness, site E396 located in the active pocket was discovered through alanine scanning. The mutant E396I displayed both developed activity and kcat/Km. The optimal pH of E396I shifted from 6.0 to 10 compared to WT, with the relative activity within the pH range of 6.0-10 significantly increased. The site K648 was then proposed by semirational design. The activity of mutant E396I/K648D reached 4.03 U/mg. The optimal pH was restored to 6.0, and the pH stability was further improved. E396I/K648D could totally hydrolyze β-casomorphin 7 within 30 min. The hydrolysate showed 64.5% inhibition on angiotensin I converting enzyme, which was more efficient than those produced by E396I and WT, 23.2 and 44.7%, respectively.
Collapse
Affiliation(s)
- Shengdi Gu
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junjie Yu
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China
- Shanghai Institute of Supervision and Inspection on Food Products and Cosmetics Quality, Shanghai 200233, P. R. China
| | - Lei Du
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, P. R. China
| | - Li Zhao
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, P. R. China
| |
Collapse
|
6
|
Wei G, Wang T, Li Y, He R, Huang A, Wang X. Identification, structural characterization, and molecular dynamic simulation of ACE inhibitory peptides in whey hydrolysates from Chinese Rushan cheese by-product. Food Chem X 2024; 21:101211. [PMID: 38384691 PMCID: PMC10878854 DOI: 10.1016/j.fochx.2024.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
To realize the high-value utilization of Rushan cheese by-product, Rushan cheese whey was used as a raw material to prepare angiotensin-Ⅰ-converting enzyme inhibitory peptides (ACEIPs). After enzymatic hydrolysisn and ultrafiltration, the sequences of peptides were identified by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Two novel ACE inhibitory peptides Phe-Asp-Arg-Pro-Phe-Leu (FDRPFL) and Lys-Trp-Glu-Lys-Pro-Phe (KWEKPF) were identified. Additionally, both of the peptides exhibited good water-solubility and no toxicity according to in-silico prediction. Fourier transform infrared spectroscopy results show that both FDRPFL and KWEKPF were enriched in β-turn and β-sheet structures. Lineweaver-Burk plots revealed that FDRPFL and KWEKPF exhibited non-competitive and mixed inhibition patterns, respectively. Molecular docking and MD simulation showed that hydrogen bonds and ionic bonds forces allowed FDRPFL and KWEKPF to form stable and compact complexes with ACE. In conclusion, enzymatic hydrolysis of Rushan cheese by-products yields bioactive peptides, increases the added value of whey and reduces environmental pollution.
Collapse
Affiliation(s)
- Guangqiang Wei
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Teng Wang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yiyan Li
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Rong He
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, Jiangsu, China
| | - Aixiang Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuefeng Wang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|
7
|
Martineau-Côté D, Achouri A, Karboune S, L’Hocine L. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Faba Bean-Derived Peptides After In Vitro Gastrointestinal Digestion: Insight into Their Mechanism of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6432-6443. [PMID: 38470110 PMCID: PMC10979453 DOI: 10.1021/acs.jafc.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Faba bean flour, after in vitro gastrointestinal digestion, showed important antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities. In the present study, 11 faba bean- derived peptides were synthesized to confirm their bioactivities and provide a deeper understanding of their mechanisms of action. The results revealed that 7 peptides were potent antioxidants, namely, NYDEGSEPR, TETWNPNHPEL, TETWNPNHPE, VIPTEPPH, VIPTEPPHA, VVIPTEPPHA, and VVIPTEPPH. Among them, TETWNPNHPEL had the highest activity in the ABTS (EC50 = 0.5 ± 0.2 mM) and DPPH (EC50 = 2.1 ± 0.1 mM) assays (p < 0.05), whereas TETWNPNHPE had the highest activity (p < 0.05) in the ORAC assay (2.84 ± 0.08 mM Trolox equivalent/mM). Synergistic and/or additive effects were found when selected peptides (TETWNPNHPEL, NYDEGSEPR, and VVIPTEPPHA) were combined. Four peptides were potent ACE inhibitors, where VVIPTEPPH (IC50 = 43 ± 1 μM) and VVIPTEPPHA (IC50 = 50 ± 5 μM) had the highest activity (p < 0.05), followed by VIPTEPPH (IC50 = 90 ± 10 μM) and then VIPTEPPHA (IC50 = 123 ± 5 μM) (p < 0.05). These peptides were noncompetitive inhibitors, as supported by kinetic studies and a molecular docking investigation. This study demonstrated that peptides derived from faba beans have multifunctional bioactivities, making them a promising food-functional and nutraceutical ingredient.
Collapse
Affiliation(s)
- Delphine Martineau-Côté
- Agriculture
and Agri-Food Canada, Saint-Hyacinthe Research
and Development Centre, Saint-Hyacinthe, Quebec J2S 8E3, Canada
- Department
of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Allaoua Achouri
- Agriculture
and Agri-Food Canada, Saint-Hyacinthe Research
and Development Centre, Saint-Hyacinthe, Quebec J2S 8E3, Canada
| | - Salwa Karboune
- Department
of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Lamia L’Hocine
- Agriculture
and Agri-Food Canada, Saint-Hyacinthe Research
and Development Centre, Saint-Hyacinthe, Quebec J2S 8E3, Canada
| |
Collapse
|
8
|
Lin H, Li W, Sun R, Xu C, Zhang C, Gao J, Cao W, Qin X, Zhong S, Chen Y. Purification and characterization of a novel immunoregulatory peptide from Sipunculus nudus L. protein. Food Sci Nutr 2023; 11:7779-7790. [PMID: 38107114 PMCID: PMC10724601 DOI: 10.1002/fsn3.3695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 12/19/2023] Open
Abstract
This study aimed to purify and characterize immunoregulatory peptides from Sipunculus nudus L. and to explore the underlying mechanisms. Ultrafiltration, gel filtration chromatography, and reverse phase high-performance liquid chromatography (RP-HPLC) were used to purify the peptide following enzymatic hydrolysis. Rates of lymphocyte proliferation and phagocytosis as well as nitric oxide (NO) production levels were used as indicators of immunoregulatory activity to screen the fractions. The amino acid sequence of the peptide, designated as SNLP, was identified as Arg-Val-Lys-Gly-Lys-Ile-Leu-Ala-Lys-Arg-Leu-Asn (RVKGKILAKRLN) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Treatment with the synthetic SNLP increased the proliferation and phagocytosis of RAW 264.7 macrophages and promoted the secretion of tumor necrosis factor-ɑ (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and NO levels. The mRNA levels of these cytokines and iNOS were also increased by SNLP. Our results provide preliminary evidence suggesting that SNLP acts as a dual immunomodulatory peptide with immunostimulatory and anti-inflammatory activities. In summary, SNLP derived from Sipunculus nudus L. is a potent immunoregulatory peptide and represents a potential functional food or immunoregulatory drug.
Collapse
Affiliation(s)
- Haisheng Lin
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Wan Li
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Ruikun Sun
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Cheng Xu
- Empress TherapeuticsCambridgeMassachusettsUSA
| | - Chaohua Zhang
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Jialong Gao
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Wenhong Cao
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Xiaoming Qin
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Saiyi Zhong
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Yibin Chen
- Hainan Semnl Biotechnology Co. Ltd.ChengmaiChina
| |
Collapse
|
9
|
Wu F, Luo X, Zhang Y, Wang P, Chang Y, He Z, Liu X. Purification, Identification, and Inhibitory Mechanisms of a Novel ACE Inhibitory Peptide from Torreya grandis. Nutrients 2023; 15:2374. [PMID: 37242257 PMCID: PMC10224335 DOI: 10.3390/nu15102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Torreya grandis meal has a high protein content and an appropriate amino acid ratio, making it an excellent protein source for producing ACE inhibitory peptides. To promote its application in food, medicine, and other fields, an alkaline protease hydrolysate of Torreya grandis was used in this study to isolate and identify a novel angiotensin-converting enzyme inhibitory peptide, VNDYLNW (VW-7), using ultrafiltration, gel chromatography purification, LC-MS/MS, and in silico prediction. The results show that the IC50 value of VW-7 was 205.98 µM. The Lineweaver-Burk plot showed that VW-7 had a mixed-type inhibitory effect on ACE. Meanwhile, according to the results of molecular docking, VW-7 demonstrated a strong affinity for ACE (binding energy -10 kcal/mol). VW-7 was bound to ACE through multiple binding sites. In addition, VW-7 could remain active during gastrointestinal digestion in vitro. Nitric oxide (NO) generation in human endothelial cells could rise after receiving a pretreatment with VW-7. These results indicated that Torreya grandis meal protein can be developed into products with antihypertensive function, and VW-7 has broad application prospects in the field of antihypertensive.
Collapse
Affiliation(s)
- Fenghua Wu
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xiaohui Luo
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.L.); (Y.Z.); (P.W.); (Y.C.); (Z.H.)
| | - Yongzhu Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.L.); (Y.Z.); (P.W.); (Y.C.); (Z.H.)
| | - Peng Wang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.L.); (Y.Z.); (P.W.); (Y.C.); (Z.H.)
| | - Yinzi Chang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.L.); (Y.Z.); (P.W.); (Y.C.); (Z.H.)
| | - Zhiping He
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.L.); (Y.Z.); (P.W.); (Y.C.); (Z.H.)
| | - Xingquan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.L.); (Y.Z.); (P.W.); (Y.C.); (Z.H.)
| |
Collapse
|
10
|
Zhu Q, Xue J, Wang P, Wang X, Zhang J, Fang X, He Z, Wu F. Identification of a Novel ACE Inhibitory Hexapeptide from Camellia Seed Cake and Evaluation of Its Stability. Foods 2023; 12:foods12030501. [PMID: 36766030 PMCID: PMC9914026 DOI: 10.3390/foods12030501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The camellia seed cake proteins (CP) used in this study were individually hydrolyzed with neutral protease, alkaline protease, papain, and trypsin. The results showed that the hydrolysate had the highest ACE inhibitory activity at 67.36 ± 0.80% after four hours of neutral protease hydrolysis. Val-Val-Val-Pro-Gln-Asn (VVVPQN) was then obtained through ultrafiltration, Sephadex G-25 gel chromatography separation, LC-MS/MS analysis, and in silico screening. VVVPQN had ACE inhibitory activity with an IC50 value of 0.13 mg/mL (198.66 μmol/L), and it inhibited ACE in a non-competitive manner. The molecular docking indicated that VVVPQN can combine with ACE to form eight hydrogen bonds. The results of the stability study showed that VVVPQN maintained high ACE-inhibitory activity in weakly acidic and neutral environments and that heat treatment (20-80 °C) and Na+, Mg2+, as well as Fe3+ metal ions had little effect on the activity of VVVPQN. Moreover, it remained relatively stable after in vitro simulated gastrointestinal digestion. These results revealed that VVVPQN identified in camellia seed cake has the potential to be applied in functional food or antihypertensive drugs.
Collapse
Affiliation(s)
- Qiaonan Zhu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jiawen Xue
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Peng Wang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xianbo Wang
- Zhejiang Feixiangyuan Food Co., Ltd., Lishui 323400, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xuezhi Fang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhiping He
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Correspondence: (Z.H.); (F.W.)
| | - Fenghua Wu
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Correspondence: (Z.H.); (F.W.)
| |
Collapse
|
11
|
Xie D, Shen Y, Su E, Du L, Xie J, Wei D. Anti-Hyperuricemic, Nephroprotective, and Gut Microbiota Regulative Effects of Separated Hydrolysate of α-Lactalbumin on Potassium Oxonate- and Hypoxanthine-Induced Hyperuricemic Mice. Mol Nutr Food Res 2023; 67:e2200162. [PMID: 36308034 DOI: 10.1002/mnfr.202200162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/29/2022] [Indexed: 01/19/2023]
Abstract
SCOPE This study aims to investigate the anti-hyperuricemic and nephroprotective effects and the potential mechanisms of the separated gastrointestinal hydrolysates of α-lactalbumin on hyperuricemic mice. METHODS AND RESULTS The gastrointestinal hydrolysate of α-lactalbumin, the hydrolysate fraction with molecular weight (MW) < 3 kDa (LH-3k), and the fragments with smallest MW among LH-3K harvested through dextran gel chromatography (F5) are used. Hyperuricemia mice are induced via daily oral gavage of potassium oxonate and hypoxanthine. F5 displays the highest in vitro xanthine oxidase (XO) inhibition among all the fractions separated from LH-3k. Oral administration of F5 significantly reduces the levels of serum uric acid (UA), creatinine, and urea nitrogen. F5 treatment could ameliorate kidney injury through alleviating oxidative stress and inflammation. F5 alleviates hyperuricemia in mice by inhibiting hepatic XO activity and regulating the expression of renal urate transporters. Gut microbiota analysis illustrates that F5 administration increases the abundance of some SCFAs producers, and inhibits the growth of hyperuricemia and inflammation associated genera. LH-3k exhibits similar effects but does not show significance as those of the F5 fraction. CONCLUSION The anti-hyperuricemia and nephroprotective functions of F5 are mediated by inhibiting hepatic XO activity, ameliorating oxidative stress and inflammation, regulating renal urate transporters, and modulating the gut microbiota in hyperuricemic mice.
Collapse
Affiliation(s)
- Dewei Xie
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Lei Du
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China.,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, P. R. China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China.,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, P. R. China
| |
Collapse
|
12
|
Screening, ACE-inhibitory mechanism and structure-activity relationship of a novel ACE-inhibitory peptide from Lepidium meyenii (Maca) protein hydrolysate. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Food Peptides, Gut Microbiota Modulation, and Antihypertensive Effects. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248806. [PMID: 36557936 PMCID: PMC9788432 DOI: 10.3390/molecules27248806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
The gut microbiota is increasingly important in the overall human health and as such, it is a target in the search of novel strategies for the management of metabolic disorders including blood pressure, and cardiovascular diseases. The link between microbiota and hypertension is complex and this review is intended to provide an overview of the mechanism including the production of postbiotics, mitigation of inflammation, and the integration of food biological molecules within this complex system. The focus is on hydrolyzed food proteins and peptides which are less commonly investigated for prebiotic properties. The analysis of available data showed that food peptides are multifunctional and can prevent gut dysbiosis by positively affecting the production of postbiotics or gut metabolites (short-chain fatty acids, polysaccharides, biogenic amines, bile acids). Peptides and the postbiotics then displayed antihypertensive effects via the renin-angiotensin system, the gut barrier, the endothelium, and reduction in inflammation and oxidative stress. Despite the promising antihypertensive effect of the food peptides via the modulation of the gut, there is a lack of human studies as most of the works have been conducted in animal models.
Collapse
|
14
|
Xie D, Shen Y, Su E, Du L, Xie J, Wei D. The effects of angiotensin I-converting enzyme inhibitory peptide VGINYW and the hydrolysate of α-lactalbumin on blood pressure, oxidative stress and gut microbiota of spontaneously hypertensive rats. Food Funct 2022; 13:2743-2755. [PMID: 35171185 DOI: 10.1039/d1fo03570c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
VGINYW is a highly active angiotensin I-converting enzyme (ACE) inhibitory peptide discovered from α-lactalbumin by an in vitro-in silico high throughput screening strategy. The aim of this study was to evaluate the antihypertensive effect of the peptide and the α-lactalbumin hydrolysates under 3 kDa (LH-3k), and illustrate the possible mechanism in spontaneously hypertensive rats (SHRs). SHRs were administered with VGINYW and LH-3k at doses of 5 mg per kg BW and 100 mg per kg BW, respectively. VGINYW and LH-3k could markedly decrease the systolic blood pressure (SBP) of the SHRs, and the maximal drops of 21 mmHg (2 h after administration) and 17 mmHg (4 h after administration) were achieved during the 8 hour test, respectively. When the agents were given once per day for 4 weeks, they caused a long-term decrease of 16 mmHg of SBP. VGINYW and LH-3k control the blood pressure through regulating the renin-angiotensin system by inhibiting the ACE activity and diminishing the angiotensin II level, and further upregulating the expression levels of the angiotensin-converting enzyme 2 and angiotensin type 2 receptor, and downregulating the expression of the angiotensin type 1 receptor. VGINYW and LH-3k could notably ameliorate the oxidative stress in the SHR as well. It is more important that the gavage of VGINYW and LH-3k could alleviate hypertension-associated intestinal microbiota dysbiosis by recovering the diversity of the gut microbiota and altering the key floras which are short chain fatty acid producers. In conclusion, VGINYW and LH-3k are effective functional ingredients for blood pressure control.
Collapse
Affiliation(s)
- Dewei Xie
- State Key Laboratory of Bioreactor Engineering; Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering; Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Du
- State Key Laboratory of Bioreactor Engineering; Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering; Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China. .,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, P. R. China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering; Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China. .,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, P. R. China
| |
Collapse
|