1
|
Kaur D, Qadri OS. Anthocyanin and phenolic landscape of Syzygium cumini extracts via green extraction. Food Chem 2025; 472:142916. [PMID: 39824078 DOI: 10.1016/j.foodchem.2025.142916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
This study determined the anthocyanin and phenolic profile of Syzygium cumini bioactive compounds, including anthocyanins and other flavonoids, alongside diverse phenolic compounds. The study optimized a green extraction technique (ultrasound-assisted enzymatic extraction (UAEE)) to obtain anthocyanin-rich extract from the fruit pulp of S. cumini using the pectinase enzyme. UHPLC-LC/MS, FTIR, and SEM were used to profile the secondary metabolites, functional groups, and surface morphology. Two major anthocyanins, cyanidin and malvidin, and twenty-three non-anthocyanins, including gallic acid, naringenin, myricetin, and kaempferol, were identified in the enzymatic extract of S. cumini. A central-composite design was used to optimize the extraction, analyzing the effects of enzyme concentration (0.01-0.03 %), pH (1-3), and ultrasonication time (5-15 min) on total anthocyanin content (438.75 ± 29.81 mg C3G/100 g db), determining the optimal points (0.01 %, 2 pH and 10 mins). The optimized extract was further investigated for total phenolic content and antioxidant activities. The study utilized an economical approach to effectively extract maximum anthocyanins from S. cumini fruit for their potential applications as a biocolorant in food products, simultaneously establishing promising health potential through available literature.
Collapse
Affiliation(s)
- Darshanjot Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Ovais Shafiq Qadri
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India.
| |
Collapse
|
2
|
Siripattanakulkajorn C, Sombutsuwan P, Villeneuve P, Baréa B, Domingo R, Lebrun M, Aryusuk K, Durand E. Physical properties and oxidative stability of mayonnaises fortified with natural deep eutectic solvent, either alone or enriched with pigmented rice bran. Food Chem 2025; 463:141124. [PMID: 39243623 DOI: 10.1016/j.foodchem.2024.141124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
This article explores the novel use of natural deep eutectic solvents (NaDES) in real food by incorporating them into mayonnaise, either alone or with pigmented rice bran (RB). Results showed that NaDES-fortified mayonnaises could prevent lipid oxidation. Notably, mayonnaises with NaDES2 (betaine:sucrose:water) significantly reduced the production of lipid hydroperoxides, which was maintained to an average of 2.6 mmol LOOH/kg oil, which is 2.9 times lower than the control (7.5 mmol LOOH/kg oil), or 7.4 times lower than mayonnaise with citric acid (19.1 mmol LOOH/kg oil). NaDES2-fortified mayonnaises maintained high tocopherols levels (0.97 g/Kg oil) and reduced volatile compounds from secondary lipid oxidation. This effect may result from NaDES altering the aqueous phase properties of mayonnaise, notably by reducing water activity by ∼0.1. Finally, pre-enrichment of the NaDES phase with bioactive molecules (e.g. from pigmented RB) represents an innovative perspective to promote the health benefits of formulated foods.
Collapse
Affiliation(s)
- Chatchai Siripattanakulkajorn
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Piraporn Sombutsuwan
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Pierre Villeneuve
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Bruno Baréa
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Romain Domingo
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Marc Lebrun
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Kornkanok Aryusuk
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand; Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand.
| | - Erwann Durand
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France.
| |
Collapse
|
3
|
Lu Z, Wang X, Lin X, Mostafa S, Zou H, Wang L, Jin B. Plant anthocyanins: Classification, biosynthesis, regulation, bioactivity, and health benefits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109268. [PMID: 39520908 DOI: 10.1016/j.plaphy.2024.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Anthocyanins are naturally water-soluble pigments of plants, which can be pink, orange, red, purple, or blue. Anthocyanins belong to a subcategory of flavonoids known as polyphenols and are consumed in plant-based foods. The antioxidant properties of anthocyanins benefit human health. However, there has been no comprehensive review of the classification, distribution, and biosynthesis of anthocyanins and their regulation in plants, along with their potential health benefits. In this review, we provide a systematic synthesis of recent progress in anthocyanin research, specifically focusing on the classification, biosynthetic pathways, regulatory mechanisms, bioactivity, and health benefits. We bridge the gaps in understanding anthocyanin biological significance and potential applications. Furthermore, we discuss future directions for anthocyanin research, such as biotechnology, bioavailability, and the integration of artificial intelligence. We highlight pivotal research questions that warrant further exploration in the field of anthocyanin research.
Collapse
Affiliation(s)
- Zhaogeng Lu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Xinwen Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Xinyi Lin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Salma Mostafa
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Helin Zou
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Li Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Okonkwo CE, Olaniran AF, Esua OJ, Elijah AO, Erinle OC, Afolabi YT, Olajide OP, Iranloye YM, Zhou C. Synergistic effect of drying methods and ultrasonication on natural deep eutectic solvent extraction of phytochemicals from African spinach (Amaranthus hybridus) stem. J Food Sci 2024; 89:7115-7131. [PMID: 39331045 DOI: 10.1111/1750-3841.17339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
The study evaluated the combined effects of drying methods (air drying [AD], hot AD [HAD], microwave drying [MD], and freeze-drying [FD]) and ultrasonication parameters (sonication temperature [STemp]: 40, 50, and 60°C) and heating time (STime: 60 and 120 min) on natural deep eutectic solvent (NADES) extraction of phytochemicals from Amaranthus hybridus stem. Increasing the STemp increased the extraction yield (ECY) of the phytochemicals for all drying methods but increase in the heating time reduced the ECY slightly. MD combined with 60°C ST showed the highest ECY (53%), whereas HAD combined with 40°C ST had the lowest ECY (18%). At 60 min heating time, increasing the ST from 40 to 50°C increased the total phenolic content (TPC) in the extract for most drying methods except MD, and a sonication time of 120 min showed a slightly higher TPC, especially for MD samples. At 60 min sonication, total flavonoid content (TFC, 800 mgQE/g) was highest for AD plus 50°C ST and lowest for AD combined with 60°C (100 mgQE/g), whereas for 120 min sonication, MD and AD with 50°C showed the highest TFC (690 mgQE/g). FD retained better some of the vitamins (thiamine, riboflavin, niacin) but MD retained better vitamin C. The antioxidant capacity was not so much different among the drying methods except for FD, which showed lower values. These results provide a theoretical basis for the synergistic applications of drying and ultrasonication during NADES extraction of phytochemicals from Amaranthus hybridus.
Collapse
Affiliation(s)
- Clinton E Okonkwo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abiola F Olaniran
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Okon Johnson Esua
- Department of Agricultural and Food Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria
- Organization of African Academic Doctors (OAAD), Nairobi, Kenya
| | - Adeoye O Elijah
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Oluwakemi C Erinle
- Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Yemisi Tokunbo Afolabi
- In, dustrial Chemistry Programme, Department of Physical Sciences, College of Pure and Applied Sciences, Landmark University, Omu Aran, Nigeria
| | | | - Yetunde Mary Iranloye
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Singh L, Singh B, Bhatt ID. NADES-based extraction optimization and enrichment of Cyanidin-3-O-galactoside from Rhododendron arboreum Sm.: Kinetics and thermodynamics insights. Food Chem 2024; 455:139793. [PMID: 38823128 DOI: 10.1016/j.foodchem.2024.139793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
Cyanidin-3-O-galactoside (Cy3-gal) is the most widespread anthocyanin that has been found to be applicable to nutraceutical and pharmaceutical ingredients. Nevertheless, the process of separation and purification, susceptibilities to heat, and pH inactivation present some limitations. In the present study, natural deep eutectic solvents (NADES) with an ultrasonic-assisted extraction method were briefly studied, and the recovery of Cy3-gal from Rhododendron arboreum was highlighted. The NADES, consisting of choline chloride and oxalic acid (1:1), was screened out as an extractant, and single-factor experiments combined with a two-site kinetic model were employed to describe the extraction process. Further, the work investigated ultrasound-assisted adsorption/desorption to efficiently purify Cy3-gal using macroporous resins. The optimal extraction conditions to attain maximum Cy3-gal yield was 30% water in a 50:1 (mL/g) solvent-to-sample ratio, 11.25 W/cm3 acoustic density, and 50% duty cycle for 16 min of extraction time. Under these conditions, the results revealed 23.07 ± 0.14 mg/g of Cy3-gal, two-fold higher than the traditional solvents. Furthermore, of the different resins used, Amberlite XAD-7HP showed significantly (p < 0.05) higher adsorption/desorption capacities (12.82 ± 0.18 mg/g and 10.97 ± 0.173 mg/g) and recovery (48.41 ± 0.76%) percent over other adsorbents. Experiments on the degrading behavior (40-80 °C) of the recovered Cy3-gal were performed over time, and the first-order kinetic model better explained the obtained data. In conclusion, the study asserts the use of ultrasonication with NADES and XAD-7HP resin for the improved purification of Cy3-gal from the crude extract.
Collapse
Affiliation(s)
- Laxman Singh
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Basant Singh
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Indra Dutt Bhatt
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India.
| |
Collapse
|
6
|
Fassi Fihri R, Ez-Zoubi A, Mbarkiou L, Amar A, Farah A, Bouchamma EO. Antibacterial and antioxidant activities of Chlorella vulgaris and Scenedesmus incrassatulus using natural deep eutectic solvent under microwave assisted by ultrasound. Heliyon 2024; 10:e35071. [PMID: 39161814 PMCID: PMC11332902 DOI: 10.1016/j.heliyon.2024.e35071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Microalgae are increasingly recognized as promising sources of natural bioactive compounds. However, traditional extraction methods using volatile organic solvents (VOCs) pose environmental risks. This study explores renewable deep eutectic solvents (DES) as sustainable alternatives for extracting bioactive compounds from microalgae biomass, focusing on Chlorella vulgaris and Scenedesmus incrassatulus. Four DES systems, comprising choline chloride (ChCl) and glycerol, citric acid, urea, and glucose, were compared with three conventional solvents (ethanol, methanol, and water). Extraction efficiency was assessed based on total phenolic content (TPC), flavonoid content, and tannin content, followed by antioxidant activity evaluation using DPPH, CAT, and FRAP assays. Additionally, antibacterial activity of the DES extracts was determined against Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (ATCC 29213), and Bacillus subtilis (ATCC 3366) using disc diffusion and microplate dilution methods to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results reveal that DES, particularly choline chloride: citric acid, outperform conventional solvents in terms of polyphenol extraction efficiency, antioxidant activity, and antibacterial activity against both Gram-negative and Gram-positive bacteria. For instance, the citric acid-based DES (SIDES2) showed a TPC of 4.98 mg/g, while the conventional solvent ethanol exhibited a TPC of 3.27 mg/g. Additionally, SIDES2 exhibiting the highest DPPH scavenging activity of 75 %, compared to 60 % for ethanol. Furthermore, SIDES2 showed an MIC of 0.5 mg/ml against Staphylococcus aureus. This study underscores the potential of DES for sustainable extraction of natural antioxidants from microalgae biomass, contributing to the development of environmentally friendly extraction processes in various industries.
Collapse
Affiliation(s)
- Reda Fassi Fihri
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer street, B.P. 2202, Fez, Morocco
| | - Amine Ez-Zoubi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Imouzzer street, B.P. 2202, Fez, Morocco
| | - Latifa Mbarkiou
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer street, B.P. 2202, Fez, Morocco
| | - Aya Amar
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Science Dhar Mahraz, Sidi Mohamed Ben Abdellah University, Atlas, B. P. 1796, Fez, Morocco
| | - Abdellah Farah
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Imouzzer street, B.P. 2202, Fez, Morocco
| | - El Ouazna Bouchamma
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer street, B.P. 2202, Fez, Morocco
| |
Collapse
|
7
|
Osamede Airouyuwa J, Sivapragasam N, Ali Redha A, Maqsood S. Sustainable green extraction of anthocyanins and carotenoids using deep eutectic solvents (DES): A review of recent developments. Food Chem 2024; 448:139061. [PMID: 38537550 DOI: 10.1016/j.foodchem.2024.139061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 04/24/2024]
Abstract
Recently, deep eutectic solvents (DES) have been extensively researched as a more biocompatible and efficient alternative to conventional solvents for extracting pigments from natural resources. The efficiency of DES extraction for the anthocyanin and carotenoid can be enhanced by microwave-assisted extraction (MAE) and/or ultrasound-assisted extraction (UAE) techniques. Apart from the extraction efficiency, the toxicity and recovery of the pigments and their bioavailability are crucial for potential applications. A plethora of studies have explored the extraction efficiency, toxicity, and recovery of pigments from various natural plant-based matrices using DES. Nevertheless, a detailed review of the deep eutectic solvent extraction of natural pigments has not been reported to date. Additionally, the toxicity, safety, and bioavailability of the extracted pigments, and their potential applications are not thoroughly documented. Therefore, this review is designed to understand the aforementioned concepts in using DES for anthocyanin and carotenoid extraction.
Collapse
Affiliation(s)
- Jennifer Osamede Airouyuwa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Nilushni Sivapragasam
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; Energy and Water Center, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
8
|
Huang H, Guo S, Xu Y, Ettoumi FE, Fang J, Yan X, Xie Z, Luo Z, Cheng K. Valorization and protection of anthocyanins from strawberries (Fragaria×ananassa Duch.) by acidified natural deep eutectic solvent based on intermolecular interaction. Food Chem 2024; 447:138971. [PMID: 38461718 DOI: 10.1016/j.foodchem.2024.138971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
This study introduces an innovative approach for the valorization and protection of anthocyanins from 'Benihoppe' strawberry (Fragaria × ananassa Duch.) based on acidified natural deep eutectic solvent (NADES). Choline chloride-citric acid (ChCl-CA, 1:1) was selected and acidified to enhance the valorization and protection of anthocyanins through hydrogen bond. The optimal conditions (ultrasonic power of 318 W, extraction temperature of 61 °C, liquid-to-solid ratio of 33 mL/g, ultrasonic time of 19 min), yielded the highest anthocyanins of 1428.34 μg CGE/g DW. UPLC-Triple-TOF/MS identified six anthocyanins in acidified ChCl-CA extract. Stability tests indicated that acidified ChCl-CA significantly increased storage stability of anthocyanins in high temperature and light treatments. Molecular dynamics results showed that acidified ChCl-CA system possessed a larger diffusion coefficient (0.05 m2/s), hydrogen bond number (145) and hydrogen bond lifetime (4.38 ps) with a reduced intermolecular interaction energy (-1329.74 kcal/mol), thereby efficiently valorizing and protecting anthocyanins from strawberries.
Collapse
Affiliation(s)
- Hao Huang
- College of Ecology, Lishui University, Lishui 323000, People's Republic of China; College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, People's Republic of China
| | - Shengrong Guo
- College of Ecology, Lishui University, Lishui 323000, People's Republic of China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Fatima-Ezzahra Ettoumi
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jie Fang
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, People's Republic of China
| | - Xiaowei Yan
- College of Food and Biological Engineering, Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou 542899, People's Republic of China
| | - Zhangfu Xie
- Zhejiang Suichang Limin Pharmaceutical Co., Ltd., Lishui 323302, People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, People's Republic of China.
| |
Collapse
|
9
|
Alfaleh AA, Sindi HA. Systematic study on date palm seeds (Phoenix dactylifera L.) extraction optimisation using natural deep eutectic solvents and ultrasound technique. Sci Rep 2024; 14:16622. [PMID: 39025988 PMCID: PMC11258289 DOI: 10.1038/s41598-024-67416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Natural deep eutectic solvents (NADES) are emerging, environment-friendly solvents that have garnered attention for their application in extracting phenolic compounds. This study investigated the effects of four synthetic NADES on polyphenols extracted from date seeds (DS) using choline chloride (ChCl) as a hydrogen-bond acceptor and lactic acid (La), citric acid (Citri), glycerol (Gly), and fructose (Fruc) as hydrogen-bond donors, in comparison with DS extracts extracted by conventional solvents (water, 70% methanol, and 70% ethanol). The antioxidant activity (DPPH), total phenolic content (TPC) and 6 phenolic compounds were determined using HPLC. The results showed that the ChCl-La and ChCl-Citri systems exhibited a high extraction efficiency regarding TPC, and DPPH in the DS extracts extracted by NADES compare to those DS extracts extracted with conventional solvents (p ˂ 0.001). HPLC results demonstrated that DS extracted by ChCl-La contained all measured phenolic compounds. Also gallic acid and catechin were the major compounds identified in the DS extracts. In addition DS extracted by ChCl-Citri and ChCl-Gly had the highest concentration of catechin. In conclusion, combining NADES is a promising and environment-friendly alternative to the conventional solvent extraction of phenolic compounds from DS.
Collapse
Affiliation(s)
- Alanood A Alfaleh
- Department of Environmental Sciences, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Food and Nutrition Department, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba A Sindi
- Food and Nutrition Department, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
10
|
Yücetepe M, Tuğba Özaslan Z, Karakuş MŞ, Akalan M, Karaaslan A, Karaaslan M, Başyiğit B. Unveiling the multifaceted world of anthocyanins: Biosynthesis pathway, natural sources, extraction methods, copigmentation, encapsulation techniques, and future food applications. Food Res Int 2024; 187:114437. [PMID: 38763684 DOI: 10.1016/j.foodres.2024.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Numerous datasets regarding anthocyanins have been noted elsewhere. These previous studies emphasized that all processes must be carried out meticulously from the source used to obtain anthocyanins to their inclusion in relevant applications. However, today, full standardization has not yet been achieved for these processes. For this, presenting the latest developments regarding anthocyanins under one roof would be a useful approach to guide the scientific literature. The current review was designed to serve the stated points. In this context, their biosynthesis pathway was elaborated. Superior potential of fruits and certain by-products in obtaining anthocyanins was revealed compared to their other counterparts. Health-promoting benefits of anthocyanins were detailed. Also, the situation of innovative techniques (ultrasound-assisted extraction, subcritical water extraction, pulse electrical field extraction, and so on) in the anthocyanin extraction was explained. The stability issues, which is one of the most important problems limiting the use of anthocyanins in applications were discussed. The role of copigmentation and various encapsulation techniques in solving these stability problems was summarized. This critical review is a map that provides detailed information about the processes from obtaining anthocyanins, which stand out with their functional properties, to their incorporation into various systems.
Collapse
Affiliation(s)
- Melike Yücetepe
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey
| | - Zeynep Tuğba Özaslan
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey
| | - Mehmet Şükrü Karakuş
- Harran University, Application and Research Center for Science and Technology, Şanlıurfa, Turkey
| | - Merve Akalan
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey
| | - Asliye Karaaslan
- Harran University, Vocational School, Food Processing Programme, Şanlıurfa, Turkey
| | - Mehmet Karaaslan
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey
| | - Bülent Başyiğit
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey.
| |
Collapse
|
11
|
Zhang S, Lin S, Zhang J, Liu W. Ultrasound-assisted natural deep eutectic solvent extraction of anthocyanin from Vitis davidii Foex. pomace: Optimization, identification, antioxidant activity and stability. Heliyon 2024; 10:e33066. [PMID: 38988524 PMCID: PMC11234101 DOI: 10.1016/j.heliyon.2024.e33066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
An efficient and environmentally friendly extraction method utilizing an ultrasonic-assisted natural deep eutectic solvent (UAE-NADES) was developed for the extraction of anthocyanins from Vitis davidii Foex. A screening process was conducted to evaluate seven different NADESs, resulting in the selection of a high-efficiency NADES (choline chloride-glycerol (ChGly)). To analyze the influence of significant factors and their interactive effects on the total anthocyanin content (TAC), response surface methodology (RSM) was employed. Furthermore, the conditions of extraction were optimized to attain the most productive yield of total anthocyanin content. The theoretical optimal conditions were determined to be a liquid‒solid ratio of 34.46 mL/g, an extraction temperature of 322.79 K and an ultrasonic power of 431.67 W, under which the verification TAC value (3.682 ± 0.051 mg/g) was highly consistent with the theoretical value (3.690 mg/g). Seventeen anthocyanins were identified by UPLC‒MS/MS. The contents of the main anthocyanins peonidin-3,5-O-diglucoside, malvidin-3,5-O-diglucoside, malvidin-3-O-5-O-(6-O-coumaroyl)-diglucoside, and malvidin-3-O-(6-O-p-coumaroyl)-glucoside in the ChGly extracts were significantly higher than those in the acid‒alcohol extract. Stability assays showed that the stability of anthocyanins in ChGly is higher than that in acidified alcohol at higher temperature, pH and stronger illumination. In vitro antioxidant results showed that the antioxidant capacities of the compounds extracted through the use of UAE-NADES were higher than those extracted using acidified alcohol. Additionally, the thermal behavior of anthocyanin extracts was further characterized through DSC analysis, highlighting the influence of ChGly or acidic ethanol. The results indicate that UAE-NADES exhibits a significant effect on the extraction of anthocyanins from plant byproducts, suggesting that its potential for use in the food sector is considerable.
Collapse
Affiliation(s)
- Shushu Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Shuhua Lin
- Hunan Agricultural Product Processing Institute, Changsha, 410125, China
| | - Juhua Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
- Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Wei Liu
- Hunan Agricultural Product Processing Institute, Changsha, 410125, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
| |
Collapse
|
12
|
Božović D, Dimić I, Teslić N, Mišan A, Pojić M, Stupar A, Mandić A, Milošević S, Zeković Z, Pavlić B. Valorization of Sour Cherry Kernels: Extraction of Polyphenols Using Natural Deep Eutectic Solvents (NADESs). Molecules 2024; 29:2766. [PMID: 38930830 PMCID: PMC11206417 DOI: 10.3390/molecules29122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The objective of this research was to optimize the natural deep eutectic solvent (NADES) extraction process from sour cherry kernels (Prunus cerasus L.). For polyphenol isolation, conventional solid-liquid extraction was employed using different concentrations of ethanol (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 96%), as well as the innovative NADES extraction technique. In the initial phase of the research, a screening of 10 different NADESs was conducted, while extraction was carried out under constant parameters (50 °C, 1:20 w/w, 60 min). NADES 4, composed of lactic acid and glucose in a molar ratio of 5:1, exhibited the highest efficiency in the polyphenol isolation. In the subsequent phase of the research, response surface methodology (RSM) was utilized to optimize the extraction process. Three independent variables, namely temperature, extraction time, and solid-liquid (S/L) ratio, were examined at three different levels. The extracted samples were analyzed for total phenol (TP) and antioxidant activity using the DPPH, ABTS, and FRAP assays. ANOVA and descriptive statistics (R2 and CV) were performed to fit the applied model. According to RSM, the optimal extraction conditions were determined as follows: temperature of 70 °C, extraction time of 161 min, and S/L ratio of 1:25 w/w.
Collapse
Affiliation(s)
- Danica Božović
- Faculty of Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (D.B.); (I.D.); (S.M.); (Z.Z.)
| | - Ivana Dimić
- Faculty of Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (D.B.); (I.D.); (S.M.); (Z.Z.)
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (A.M.); (M.P.); (A.S.); (A.M.)
| | - Aleksandra Mišan
- Institute of Food Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (A.M.); (M.P.); (A.S.); (A.M.)
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (A.M.); (M.P.); (A.S.); (A.M.)
| | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (A.M.); (M.P.); (A.S.); (A.M.)
| | - Anamarija Mandić
- Institute of Food Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (A.M.); (M.P.); (A.S.); (A.M.)
| | - Sanja Milošević
- Faculty of Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (D.B.); (I.D.); (S.M.); (Z.Z.)
| | - Zoran Zeković
- Faculty of Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (D.B.); (I.D.); (S.M.); (Z.Z.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (D.B.); (I.D.); (S.M.); (Z.Z.)
| |
Collapse
|
13
|
Wang Y, Li C, Li Z, Moalin M, den Hartog GJM, Zhang M. Computational Chemistry Strategies to Investigate the Antioxidant Activity of Flavonoids-An Overview. Molecules 2024; 29:2627. [PMID: 38893503 PMCID: PMC11173571 DOI: 10.3390/molecules29112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Despite several decades of research, the beneficial effect of flavonoids on health is still enigmatic. Here, we focus on the antioxidant effect of flavonoids, which is elementary to their biological activity. A relatively new strategy for obtaining a more accurate understanding of this effect is to leverage computational chemistry. This review systematically presents various computational chemistry indicators employed over the past five years to investigate the antioxidant activity of flavonoids. We categorize these strategies into five aspects: electronic structure analysis, thermodynamic analysis, kinetic analysis, interaction analysis, and bioavailability analysis. The principles, characteristics, and limitations of these methods are discussed, along with current trends.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Chujie Li
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Zhengwen Li
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China;
| | - Mohamed Moalin
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands;
| | - Gertjan J. M. den Hartog
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Ming Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| |
Collapse
|
14
|
Yu T, Yang L, Shang X, Bian S. Recovery of Cembratrien-Diols from Waste Tobacco ( Nicotiana tabacum L.) Flowers by Microwave-Assisted Deep Eutectic Solvent Extraction: Optimization, Separation, and In Vitro Bioactivity. Molecules 2024; 29:1563. [PMID: 38611842 PMCID: PMC11013614 DOI: 10.3390/molecules29071563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Deep eutectic solvents (DESs) are novel solvents with physicochemical properties similar to those of ionic liquids, and they have attracted extensive attention for the extraction of bioactive compounds from different plant materials in the context of green chemistry and sustainable development. In this study, seven DESs with different polarities were explored as green extraction solvents for cembratrien-diols (CBT-diols) from waste tobacco flowers. The best solvent, DES-3 (choline chloride: lactic acid (1:3)), which outperformed conventional solvents (methanol, ethanol, and ethyl acetate), was selected and further optimized for microwave-assisted DES extraction using the response surface methodology. The maximum yield of CBT-diols (6.23 ± 0.15 mg/g) was achieved using a microwave power of 425 W, microwave time of 32 min, solid/liquid ratio of 20 mg/mL, and microwave temperature of 40 °C. Additionally, the isolated CBT-diols exhibited strong antimicrobial activity against Salmonella, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa and antitumor activity in the human liver cancer HepG2 and SMMC-7721 cell lines. This study highlights the feasibility of recovering CBT-diols from tobacco flower waste using DESs and provides opportunities for potential waste management using green technologies.
Collapse
Affiliation(s)
- Tao Yu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Xianchao Shang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Shiquan Bian
- Anhui Provincial Key Laboratory of Rice Genetics and Breeding, Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
15
|
Monasterio A, Osorio FA. Physicochemical Properties of Nanoliposomes Encapsulating Grape Seed Tannins Formed with Ultrasound Cycles. Foods 2024; 13:414. [PMID: 38338549 PMCID: PMC10855365 DOI: 10.3390/foods13030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Grape seeds are an excellent source of flavonoids and tannins with powerful antioxidant properties. However, the astringency of tannins limits their direct incorporation into food. To overcome this challenge, we investigated the encapsulation of grape seed tannins within nanoliposomes formed by ultrasound cycling. We characterized the nanoliposomes' physicochemical properties, including encapsulation efficiency, antioxidant activity, stability, microstructure, and rheological properties. Our findings reveal that the nanoliposomes exhibited excellent stability under refrigerated conditions for up to 90 days with a mean particle size of 228 ± 26 nm, a polydispersity index of 0.598 ± 0.087, and a zeta potential of -41.6 ± 1.30 mV, maintaining a spherical multilamellar microstructure. Moreover, they displayed high antioxidant activity, with encapsulation efficiencies of 79% for epicatechin and 90% for catechin. This innovative approach demonstrates the potential of using ultrasound-assisted nanoliposome encapsulation to directly incorporate grape seed tannins into food matrices, providing a sustainable and efficient method for enhancing their bioavailability and functionality.
Collapse
Affiliation(s)
| | - Fernando A. Osorio
- Department of Food Science and Technology, Technological Faculty, University of Santiago—Chile, USACH, Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| |
Collapse
|
16
|
Ratanasongtham P, Bunmusik W, Luangkamin S, Mahatheeranont S, Suttiarporn P. Optimizing green approach to enhanced antioxidants from Thai pigmented rice bran using deep eutectic solvent-based ultrasonic-assisted extraction. Heliyon 2024; 10:e23525. [PMID: 38187326 PMCID: PMC10767381 DOI: 10.1016/j.heliyon.2023.e23525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Deep eutectic solvents (DES) have garnered significant attention as extraction media owing to their commendable attributes of being environmentally sustainable and the inherent adaptability of DES's versatile physical and chemical characteristics. The present study investigated the effects of deep eutectic solvents on the total contents of anthocyanin, phenolic, and flavonoids, as well as the antioxidant activity of Thai pigmented rice bran extract. The optimal extraction parameters for deep eutectic solvent-based ultrasonic-assisted extraction (DES-UAE) were also determined using the response surface methodology (RSM). The optimal conditions for the extraction of anthocyanins and other antioxidants from pigmented rice bran using a deep eutectic solvent were choline chloride: ethylene glycol (Ch:Eg) at a 1:2 ratio, mixed with 20 % water as a solvent. The ultrasonic-assisted extraction (UAE) at 37 kHz of frequency, 50 °C of temperature, 40 min of extraction time, and a 1:6 g/mL of solid-to-solvent ratio yielded a total anthocyanin content of 4.55 ± 0.09 mg C3G/g DW, a total phenolic content of 26.49 ± 0.62 mg GAE/g DW, a total flavonoid content of 6.57 ± 0.55 mg QE/g DW, and a percent inhibition of DPPH radical of 77.83 ± 1.51. By comparing the antioxidant content that was extracted from three cultivars of pigmented rice, it was found that Leum Pua black rice bran provided significantly higher antioxidant content compared to Hom Nin purple rice bran and Mali Dang red rice bran. This research suggests an achievable, eco-friendly, and effective method for preparing high-quality, consumer-safe Thai rice bran as a raw material for nutraceuticals.
Collapse
Affiliation(s)
- Pacharawan Ratanasongtham
- Faculty of Science and Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage, Pathum Thani, 13180, Thailand
| | - Wasitthi Bunmusik
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong, 21120, Thailand
| | - Suwaporn Luangkamin
- Department of Fundamental Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University, Sriracha Campus, Chonburi, 20230, Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Panawan Suttiarporn
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong, 21120, Thailand
| |
Collapse
|
17
|
Christou A, Parisis NA, Venianakis T, Barbouti A, Tzakos AG, Gerothanassis IP, Goulas V. Ultrasound-Assisted Extraction of Taro Leaf Antioxidants Using Natural Deep Eutectic Solvents: An Eco-Friendly Strategy for the Valorization of Crop Residues. Antioxidants (Basel) 2023; 12:1801. [PMID: 37891880 PMCID: PMC10604219 DOI: 10.3390/antiox12101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Colocasia esculenta L. leaves are considered a by-product of taro cultivation and are discarded as environmental waste, despite their valuable phenolic composition. Their valorization to obtain value-added substances for medicinal, food, and cosmetic applications is the aim of the current work. An ultrasound-assisted extraction was developed for the environmentally friendly and sustainable isolation of taro leaf antioxidants using natural deep eutectic solvents (NaDESs). Among the utilized solvents, the NaDES based on betaine and ethylene glycol provided the best extraction efficiencies in terms of polyphenolic content and antioxidant activity. Multi-response optimization suggested a solvent-to-solid ratio of 10 mL g-1, a processing time of 60 min, an extraction temperature of 60 °C, and a water content of 33.8% (w/w) as optimal extraction parameters. Leaf extract obtained under these optimum operational parameters demonstrated a strong radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (65.80 ± 0.87%), a high ferric reducing antioxidant power (126.62 ± 1.92 μmol TE g-1 sample), and significant protection against oxidative stress-induced DNA damage. The chromatographic characterization of the optimum extract revealed its richness in flavonoids (flavones and flavonols). The outcomes of the present study suggest that the proposed method could serve as a highly efficient and green alternative for the recovery of polyphenols from agricultural wastes.
Collapse
Affiliation(s)
- Atalanti Christou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos 3603, Cyprus
| | - Nikolaos A. Parisis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (N.A.P.); (T.V.); (A.G.T.); (I.P.G.)
| | - Themistoklis Venianakis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (N.A.P.); (T.V.); (A.G.T.); (I.P.G.)
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (N.A.P.); (T.V.); (A.G.T.); (I.P.G.)
| | - Ioannis P. Gerothanassis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (N.A.P.); (T.V.); (A.G.T.); (I.P.G.)
| | - Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos 3603, Cyprus
| |
Collapse
|
18
|
Vo TP, Pham TV, Weina K, Tran TNH, Vo LTV, Nguyen PT, Bui TLH, Phan TH, Nguyen DQ. Green extraction of phenolics and flavonoids from black mulberry fruit using natural deep eutectic solvents: optimization and surface morphology. BMC Chem 2023; 17:119. [PMID: 37735704 PMCID: PMC10512608 DOI: 10.1186/s13065-023-01041-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
This study deployed ultrasonic-assisted extraction (UAE), combined with natural deep eutectic solvents (NADES), to extract phenolics and flavonoids from the black mulberry fruit, and the antioxidant activity was examined. The extraction yields of NADES-based UAE were assessed based on the yields of phenolics and flavonoids extracted from the black mulberry fruit. This study selected the molar ratios of hydrogen bond acceptors (HBA) and hydrogen bond donors HBD at 1:2 from previous studies. Choline chloride-lactic acid showed the highest solubility with phenolics and flavonoids among NADES systems. One-factor experiments evaluated the effect of UAE conditions (liquid-to-solid ratio (LSR), water content in NADES, temperature, and time) on TPC, TFC, and antioxidant activity. The suitable NADES-based UAE conditions for extracting phenolics and flavonoids from the black mulberry fruit were 60 ml/g of LSR, 40% water content, 70 °C, and 15 min. Response surface methodology with the Box-Behnken design model optimized the NADES-based UAE process based on response (TPC, TFC, ABTS, OH, and DPPH). The optimal conditions for the NADES-based UAE process were 70 ml/g of LSR, 38.9% water content in NADES, 67.9 °C, and 24.2 min of extraction time. The predicted values of the Box-Behnken design were compatible with the experimental results. Moreover, scanning electron microscopy (SEM) was used to survey the surface of black mulberry fruit with and without sonication. SEM can assist in demonstrating the destructive effect of NADES and ultrasonic waves on material surfaces. SEM findings indicated the high surface destruction capacity of NADES, which partially contributed to a superior extraction yield of NADES than conventional organic solvents. The study proposes an efficient and green method for extracting bioactive compounds from black mulberry fruits. The black mulberry fruit extracts can be applied to meat preservation and beverages with high antioxidants.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thuy Vy Pham
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Kasia Weina
- Evergreen Labs, My Khue Ward, Danang, Vietnam
| | - Thi Ngoc Huyen Tran
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Le Thao Vy Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Phuc Thanh Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tran Linh Ha Bui
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thuy Han Phan
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Dinh Quan Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
19
|
Zannou O, Oussou KF, Chabi IB, Odouaro OBO, Deli MGEP, Goksen G, Vahid AM, Kayodé APP, Kelebek H, Selli S, Galanakis CM. A comprehensive review of recent development in extraction and encapsulation techniques of betalains. Crit Rev Food Sci Nutr 2023; 64:11263-11280. [PMID: 37477284 DOI: 10.1080/10408398.2023.2235695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Betalains are attractive natural pigments with potent antioxidant activity, mainly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi. They constitute a reliable alternative to synthetic dyes used in the food industry and are considered toxic for consumers. In addition, there is convincing evidence of their health benefits for consumers. However, betalains are highly unstable to environment factors, such as light, heat, oxygen, water activity, and pH change which can be degraded during food processing, handling, storage, or delivery. Therefore, newly developed extraction methods and micro/nano-encapsulation techniques are currently applied to enhance the extraction yield, solve their instability problems, and improve their application in the food industry. This article aims to summarize the new advanced extraction methods of betalains, discussing the recent encapsulation techniques concerning the different encapsulating materials utilization. Betalains, natural pigments with potent antioxidant activity, are increasingly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi as safe alternatives to synthetic food dyes used in the food industry. However, their susceptibility to degradation during food processing, storage, and delivery poses challenges. Recent developments in extraction methods (e.g., supercritical fluid, pressurized liquid, ultrasound- and microwave-assisted, and enzyme-assisted) enhance betalain recovery, minimizing degradation. Encapsulation techniques using biopolymers, proteins, lipids, and nanoparticles protect betalains from environmental factors, extending shelf life and enabling controlled release. These advancements offer improved extraction efficiency, reduced solvent use, shorter processing times, and enhanced stability. Integration of these techniques in the food industry presents opportunities for incorporating betalains into various products, including functional foods, beverages, and dietary supplements. By addressing stability challenges, these developments support the production of innovative, healthier food items enriched with betalains. This article provides an overview of recent advancements in betalain extraction and encapsulation, highlighting their potential applications in the food industry.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, Samsun, Türkiye
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Kouame F Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Ifagbémi B Chabi
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Oscar B O Odouaro
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Mahn G E P Deli
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| | - Aïssi M Vahid
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété, Benin
| | - Adéchola P P Kayodé
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Türkiye
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Charis M Galanakis
- Department of Research & Innovation, Galanakis Laboratories, Chania, Greece
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
20
|
Castro-Muñoz R, Can Karaça A, Saeed Kharazmi M, Boczkaj G, Hernández-Pinto FJ, Anusha Siddiqui S, Jafari SM. Deep eutectic solvents for the food industry: extraction, processing, analysis, and packaging applications - a review. Crit Rev Food Sci Nutr 2023; 64:10970-10986. [PMID: 37395659 DOI: 10.1080/10408398.2023.2230500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Food factories seek the application of natural products, green feedstock and eco-friendly processes, which minimally affect the properties of the food item and products. Today, water and conventional polar solvents are used in many areas of food science and technology. As modern chemistry evolves, new green items for building eco-friendly processes are being developed. This is the case of deep eutectic solvents (DESs), named the next generation of green solvents, which can be involved in many food industries. In this review, we timely analyzed the progress on applying DES toward the development of formulations, extraction of target biomolecules, food processing, extraction of undesired molecules, analysis and determination of specific analytes in food samples (heavy metals, pesticides), food microbiology, and synthesis of new packaging materials, among many other applications. For this, the latest developments (over the last 2-3 years) have been discussed emphasizing innovative ideas and outcomes. Relevantly, we discuss the hypothesis and the key features of using DES in the mentioned applications. To some extent, the advantages and limitations of implementing DES in the food industry are also elucidated. Finally, based on the findings of this review, the perspectives, research gaps and potentialities of DESs are stated.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
- Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy, Buenavista, Toluca de Lerdo, Mexico
| | - Aslı Can Karaça
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | | | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
| | | | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straβe 7, Quakenbrück, Germany
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
21
|
Vo TP, Pham ND, Pham TV, Nguyen HY, Vo LTV, Tran TNH, Tran TN, Nguyen DQ. Green extraction of total phenolic and flavonoid contents from mangosteen (Garcinia mangostana L) rind using natural deep eutectic solvents. Heliyon 2023; 9:e14884. [PMID: 37095977 PMCID: PMC10121615 DOI: 10.1016/j.heliyon.2023.e14884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023] Open
Abstract
This research combined ultrasonic-assisted extraction (UAE) and natural deep eutectic solvent (NADES) to recover phenolic and flavonoid components from mangosteen rind. The antioxidant activities were determined using DPPH, ABTS+, and hydroxyl assays. NADES prepared from lactic and 1,2-propanediol had the highest extraction efficiency based on the total flavonoid content (TFC) and phenolic contents (TPC). Single-factor experiments were employed to assess the influence of UAE conditions (liquid-to-solid ratio, temperature, water content in NADES, and time) on TFC, TPC, and antioxidant activities. NADES-based UAE conditions were optimized using response surface methodology with the Box-Behnken design model on five dependent responses (TPC, TFC, DPPH, ABTS, and OH). The optimal conditions for the lactic-1,2-Propanediol-based UAE process were 76.7 ml liquid/g solid with 30.3% of water content at 57.5 °C for 9.1 min. Scanning electron microscopy (SEM) was applied to examine the surface morphology of mangosteen rind before and after sonication. This study proposes an efficient, green, and practical approach for recovering phenolics and flavonoids from mangosteen rinds.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Ngoc Duyen Pham
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thuy Vy Pham
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hoang Yen Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Le Thao Vy Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thi Ngoc Huyen Tran
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tri Nguyen Tran
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Dinh Quan Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
- Corresponding author. Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
| |
Collapse
|
22
|
Wong YS, Yusoff R, Ngoh GC. Phenolic compounds extraction by assistive technologies and natural deep eutectic solvents. REV CHEM ENG 2023. [DOI: 10.1515/revce-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Abstract
Phenolic compounds are known to have a significant effect on human defense system due to their anti-inflammatory efficacy. This can slow down the aging process and strengthen the human immune system. With the growing interest in green chemistry concept, extraction of phenolic compounds from plants has been geared towards a sustainable path with the use of green and environmentally friendly solvents such as natural deep eutectic solvents (NADES). This review discusses both the conventional extraction and the advanced extraction methods of phenolic compounds using NADES with focus on microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) techniques ensued by a rationale comparison between them. Employing choline chloride-based natural deep eutectic solvents (NADES) is highlighted as one of the promising strategies in green solvent extraction of phenolic compounds in terms of their biodegradability and extraction mechanism. The review also discusses assistive extraction technologies using NADES for a better understanding of their relationship with extraction efficiency. In addition, the review includes an overview of the challenges of recovering phenolic compounds from NADES after extraction, the potential harmful effects of NADES as well as their future perspective.
Collapse
|
23
|
Jovanović MS, Krgović N, Radan M, Ćujić-Nikolić N, Mudrić J, Lazarević Z, Šavikin K. Natural deep eutectic solvents combined with cyclodextrins: A novel strategy for chokeberry anthocyanins extraction. Food Chem 2023; 405:134816. [DOI: 10.1016/j.foodchem.2022.134816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
24
|
Zannou O, Oussou KF, Chabi IB, Awad NMH, Aïssi MV, Goksen G, Mortas M, Oz F, Proestos C, Kayodé APP. Nanoencapsulation of Cyanidin 3- O-Glucoside: Purpose, Technique, Bioavailability, and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:617. [PMID: 36770579 PMCID: PMC9921781 DOI: 10.3390/nano13030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The current growing attractiveness of natural dyes around the world is a consequence of the increasing rejection of synthetic dyes whose use is increasingly criticized. The great interest in natural pigments from herbal origin such as cyanidin 3-O-glucoside (C3G) is due to their biological properties and their health benefits. However, the chemical instability of C3G during processing and storage and its low bioavailability limits its food application. Nanoencapsulation technology using appropriate nanocarriers is revolutionizing the use of anthocyanin, including C3G. Owing to the chemical stability and functional benefits that this new nanotechnology provides to the latter, its industrial application is now extending to the pharmaceutical and cosmetic fields. This review focuses on the various nanoencapsulation techniques used and the chemical and biological benefits induced to C3G.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Kouame F. Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, 01330 Adana, Turkey
| | - Ifagbémi B. Chabi
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Nour M. H. Awad
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Midimahu V. Aïssi
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété 00 BP 144, Benin
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Mustafa Mortas
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, 25240 Erzurum, Turkey
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Adéchola P. P. Kayodé
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| |
Collapse
|
25
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
26
|
Conventional vs. Green Extraction Using Natural Deep Eutectic Solvents—Differences in the Composition of Soluble Unbound Phenolic Compounds and Antioxidant Activity. Antioxidants (Basel) 2022; 11:antiox11112295. [DOI: 10.3390/antiox11112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate the effect of the use of green solvents, natural deep eutectic solvents (NaDES), in comparison with conventional solvents on the extraction of free unbound phenolic compounds and the antioxidant activity of extracts of dried bilberry fruit, bilberry leaves and green tea leaves. After preparation of the extracts via ultrasound-assisted extraction using NaDES and conventional solvents (water and ethanol), spectrophotometric determination of total phenolic and flavonoid content, HPLC analysis of extracted polyphenols and antioxidant determination using FRAP, DPPH and ABTS assays were conducted. The results showed that NaDES have a great potential as agents for the extraction of phenolic compounds with potent antioxidant activity; the highest values of phenolic content and antioxidant activity were detected in the samples obtained by extraction using the NaDES combination betaine + urea. The bilberry leaves exhibited the highest flavonoid content among all extracts and turned out to be more active than bilberry fruits, to which they are often just a by-product during processing. The most active extract of all was the betaine-urea green tea leaves extract. Further research into the most active NaDES extracts should be performed.
Collapse
|
27
|
Wu K, Ren J, Wang Q, Nuerjiang M, Xia X, Bian C. Research Progress on the Preparation and Action Mechanism of Natural Deep Eutectic Solvents and Their Application in Food. Foods 2022; 11:3528. [PMID: 36360140 PMCID: PMC9655939 DOI: 10.3390/foods11213528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Natural deep eutectic solvent (NADES) is the eutectic mixture which is formed by hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs) with a certain molar ratio through hydrogen bonding. NADES is a liquid with low cost, easy preparation, biodegradability, sustainability and environmental friendliness at room temperature. At present, it is widely used in food, medicine and other areas. First, the composition, preparation and properties of NADES are outlined. Second, the potential mechanism of NADES in freezing preservation, the removal of heavy metals from food and the extraction of phenolic compounds, and its application in cryopreservation, food analysis and food component extraction, and as a food taste enhancer and food film, are summarized. Lastly, the potential and challenges of its application in the food field are reviewed. This review could provide a theoretical basis for the wide application of NADES in food processing and production.
Collapse
Affiliation(s)
- Kairong Wu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Maheshati Nuerjiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chun Bian
- School of Food Engineering, Harbin University, Harbin 150036, China
| |
Collapse
|
28
|
Nie F, Feng C, Ahmad N, Tian M, Liu Q, Wang W, Lin Z, Li C, Zhao C. A new green alternative solvent for extracting echinacoside and acteoside from Cistanche deserticola based on ternary natural deep eutectic solvent. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Bioavailability of blackberry pomace microcapsules by using different techniques: An approach for yogurt application. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Composition and Antioxidant Activity of Anthocyanins and Non-Anthocyanin Flavonoids in Blackberry from Different Growth Stages. Foods 2022; 11:foods11182902. [PMID: 36141030 PMCID: PMC9498317 DOI: 10.3390/foods11182902] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
The high nutritional value and unique flavor of blackberries make them a popular food choice among consumers. Anthocyanin content (AC) and non-anthocyanin flavonoid content (NAFC) are important functional components in blackberry. We tested the AC, NAFC, and antioxidant activities of two blackberry—Ningzhi 1 and Hull—during the following ripening stages: green-fruit stage (GFS), color-turning stage (CTS), reddening stage (RDS), and ripening stage (RPS). The results showed that NAFC decreased and AC increased gradually during the ripening stages. The NAFC of Hull blackberry was the highest during GFS (889.74 μg/g), while the AC of Ningzhi 1 blackberry was the highest during RPS (1027.08 μg/g). NAFC was the highest at the initial stage and gradually decreased with ripening. Anthocyanin accumulation mainly occurred during the later ripening stages. These results provide a reference for comparing the NAFC, AC, and antioxidant activity of Ningzhi 1 and Hull and their changes during different ripening stages.
Collapse
|
31
|
Liu JZ, Lyu HC, Fu YJ, Jiang JC, Cui Q. Simultaneous extraction of natural organic acid and flavonoid antioxidants from Hibiscus manihot L. flower by tailor-made deep eutectic solvent. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Ling JKU, Hadinoto K. Deep Eutectic Solvent as Green Solvent in Extraction of Biological Macromolecules: A Review. Int J Mol Sci 2022; 23:3381. [PMID: 35328803 PMCID: PMC8949459 DOI: 10.3390/ijms23063381] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Greater awareness of environmental sustainability has driven many industries to transition from using synthetic organic solvents to greener solvents in their manufacturing. Deep eutectic solvents (DESs) have emerged as a highly promising category of green solvents with well-demonstrated and wide-ranging applications, including their use as a solvent in extraction of small-molecule bioactive compounds for food and pharmaceutical applications. The use of DES as an extraction solvent of biological macromolecules, on the other hand, has not been as extensively studied. Thereby, the feasibility of employing DES for biomacromolecule extraction has not been well elucidated. To bridge this gap, this review provides an overview of DES with an emphasis on its unique physicochemical properties that make it an attractive green solvent (e.g., non-toxicity, biodegradability, ease of preparation, renewable, tailorable properties). Recent advances in DES extraction of three classes of biomacromolecules-i.e., proteins, carbohydrates, and lipids-were discussed and future research needs were identified. The importance of DES's properties-particularly its viscosity, polarity, molar ratio of DES components, and water addition-on the DES extraction's performance were discussed. Not unlike the findings from DES extraction of bioactive small molecules, DES extraction of biomacromolecules was concluded to be generally superior to extraction using synthetic organic solvents.
Collapse
Affiliation(s)
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore;
| |
Collapse
|