1
|
Yue D, Lin L, Li R, Zhang Z, Lu J, Jiang S. Effect of cold plasma and ultrasonic pretreatment on drying characteristics and nutritional quality of vacuum freeze-dried kiwifruit crisps. ULTRASONICS SONOCHEMISTRY 2025; 112:107212. [PMID: 39740335 PMCID: PMC11750578 DOI: 10.1016/j.ultsonch.2024.107212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
The effect of ultrasound and plasma pretreatment on freeze-dried kiwifruit crisps was investigated in this study. Using unpretreated kiwifruit as a control group (CG), the effects of ultrasound (US), plasma-activated water (PAW), ultrasound combined with plasma-activated water (UPAW), plasma-jet (PJ), and ultrasound combined with plasma-jet (UPJ) on the quality of vacuum freeze-dried kiwifruit were investigated. The results showed that all the pretreatments could change the microstructure of the crisps. The microstructure of dried kiwifruit after pretreatment showed more porous structures with different number and size compared to the CG group. The largest pore structure was observed in the UPAW group which had the highest crispness. The activity of water (Aw) of all pretreatment samples was significantly lower than the CG group (P < 0.05). In addition, the UPAW group had the lowest moisture content (4.85 %) and the highest rehydration ratio (288.03 %), indicating the better drying characteristics. Furthermore, the UPAW pretreatment sample showed good appearance with the highest brightness and the lowest color difference (ΔE). The total sugars and total phenolics of the UPAW pretreatment sample were mostly retained, and its flavor was the closest to the CG group. The combination of US and PAW promoted the formation of a larger cavity structure and improved the drying characteristics and physicochemical properties of dried kiwifruit crips. However, all the pretreatments resulted in a decrease in antioxidant capacity, with the least decreasing of the US group and the most decreasing of the UPAW group. Correlation analysis showed that the chlorophyll and vitamin C were the major antioxidants in dried kiwifruit crips. The mechanism of decrease in antioxidant activity of pretreatment, especially UPAW, should be discussed and the effective measure to reduce the change in chlorophyll and vitamin C should be taken in future research.
Collapse
Affiliation(s)
- Danhua Yue
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Lin Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China; Key Laboratory for Agriculture Products Processing of Anhui Province, Hefei, Anhui, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei, Anhui, China.
| | - Rongxing Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Zhongjun Zhang
- Anhui DongfangGuoyuan Biotechnology Co., Ltd, Suzhou, Anhui, China
| | - Jianfeng Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China; Key Laboratory for Agriculture Products Processing of Anhui Province, Hefei, Anhui, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei, Anhui, China
| | - Shaotong Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China; Key Laboratory for Agriculture Products Processing of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
2
|
Zhang WP, Chen C, Ju HY, Okaiyeto SA, Sutar PP, Yang LY, Li SB, Xiao HW. Pulsed vacuum drying of fruits, vegetables, and herbs: Principles, applications and future trends. Compr Rev Food Sci Food Saf 2024; 23:e13430. [PMID: 39217522 DOI: 10.1111/1541-4337.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Pulsed vacuum drying (PVD) is a novel vacuum drying method that has demonstrated significant potential in improving energy efficiency and product quality in the drying of foods and agricultural products. The current work provides a comprehensive analysis of the latest advancements in PVD technology, including its historical development, fundamental principles, and mechanistic aspects. The impact of periodic pulsed pressure changes between vacuum and atmospheric pressure on heat and moisture transfer, as well as structural changes in foods at micro- and macro-scales, is thoroughly discussed. The article also highlights the influential drying parameters, the integration of novel auxiliary heaters, and the applications of PVD across various fruits, vegetables, and herbs. Furthermore, the review examines the current status and needs for mathematical modeling of PVD processes, identifying key challenges, research opportunities, and future trends for industrial application. The findings suggest that PVD not only enhances drying efficiency and reduces energy consumption but also preserves the nutritional value, color, and texture of dried products better than traditional methods. Future research should focus on optimizing process parameters and integrating advanced control systems to further improve the scalability and applicability of PVD technology in the food industry.
Collapse
Affiliation(s)
- Wei-Peng Zhang
- School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing, China
| | - Chang Chen
- Department of Food Science, Cornell AgriTech, Cornell University, Geneva, New York, USA
| | - Hao-Yu Ju
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, Hebei, China
| | | | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Li-Yi Yang
- Guangzhou Daqiao Food Facility Co., Ltd, Guangzhou, Guangdong Province, China
| | - Suo-Bin Li
- Jiangsu Bolaike Refrigeration Technology Development Co., LTD, Changzhou, Jiangsu, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Wang D, Cao Z, Gao Y, Yang L, Zhao L. Impact of the Pre-Dehydration and Drying Methods on the Mass Transfer and Quality Attributes of Yak Milk Casein. Foods 2024; 13:1062. [PMID: 38611365 PMCID: PMC11012072 DOI: 10.3390/foods13071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Drying is an important preservation method of casein. Traditional natural draining and drying processes have low efficiency, long processing time, and poor product quality, which urgently need to be improved. This study investigated the effects of pre-dehydration intensities (30 N 30 min (PreD1) and 50 N 30 min (PreD2)) and drying methods (including pulsed vacuum drying (PVD), infrared drying (IRD), and hot air drying (HAD)) on the drying kinetics, drying modeling, and quality of yak milk casein. These findings reveal that PreD2 and PVD both had a positive impact on shortening the drying time. Compared to other combined treatments, PreD2-PVD had the shortest drying time of 6 h. The Midilli-Kucuk mathematical model effectively predicted the drying of casein. The yak milk casein powder treated with PreD2-PVD possessed a higher content of gross compositions, superior color, lower levels of fat oxidation and 5-hydroxymethylfurfural (5-HMF), and higher emulsifying activity index (EAI) and emulsion stability index (ESI) values. Overall, combining pre-dehydration with PVD proved effective in improving the drying rate and maintaining a good quality of yak milk casein, showing promising potential for industrial applications.
Collapse
Affiliation(s)
- Dong Wang
- College of Mechanical & Electrical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China;
| | - Zhi Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.C.); (Y.G.)
| | - Yumei Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.C.); (Y.G.)
| | - Lin Yang
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China;
| | - Lili Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.C.); (Y.G.)
| |
Collapse
|
4
|
Xu Y, Zhao Y, Zhang Y, Shi Q. Effect of postharvest storage time on quality characteristics of explosion puffing dried whole shiitake mushroom (Lentinula edodes) crisps. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:629-642. [PMID: 37650632 DOI: 10.1002/jsfa.12947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Non-fried shiitake mushroom (Lentinula edodes) crisps fabricated by explosion puffing drying (EPD) are receiving worldwide attention because of their crispness, convenience, nutrition and health functions. The quality of mushroom crisps varies with storage time of fresh L. edodes. Therefore, the effect of postharvest storage time (ranging from 0 to 14 days) of fresh L. edodes on quality characteristics of EPD- processed mushroom crisps was evaluated. RESULTS The weight loss and total color difference of fresh L. edodes were increased to 2.95% and 24.66, but moisture content, firmness and lightness were reduced by 6.14%, 40.70% and 43.57%, respectively, after 14 days storage. The puffing degree of mushroom crisps was initially increased to its highest value (55.95%) on the 4th day storage and thereafter decreased. The highest rehydration ratio (2.36) and crispness (63.67), and lowest hardness (102.95 N) of mushroom crisps were fabricated with L. edodes on the 4th day of storage. Free water was predominant in fresh L. edodes, which was decreased for fresh L. edodes, whereas it increased initially to the maximum value and decreased thereafter for osmotic dehydrated and heat pump pre-dried L. edodes with increasing storage time. Principal component analysis and hierarchical cluster analysis confirmed that fresh L. edodes stored at different times had a remarkable effect on quality characteristics of mushroom crisps. CONCLUSION Fresh L. edodes stored at 4 ± 1 °C for 4 days is recommended for fabrication of mushroom crisps with superior quality. This study provides a theoretical basis for selection of a suitable storage time for fresh L. edodes before EPD of crisps. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Xu
- Department of Food Science and Engineering, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Ya Zhao
- Department of Food Science and Engineering, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Yuexiang Zhang
- Department of Food Science and Engineering, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Qilong Shi
- Department of Food Science and Engineering, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
5
|
Ni JB, Zielinska M, Wang J, Fang XM, Prakash Sutar P, Li SB, Li XX, Wang H, Xiao HW. Post-harvest ripening affects drying behavior, antioxidant capacity and flavor release of peach via alteration of cell wall polysaccharides content and nanostructures, water distribution and status. Food Res Int 2023; 170:113037. [PMID: 37316090 DOI: 10.1016/j.foodres.2023.113037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
Effect of post-harvest ripening on cell wall polysaccharides nanostructures, water status, physiochemical properties of peaches and drying behavior under hot air-infrared drying was evaluated. Results showed that the content of water soluble pectins (WSP) increased by 94 %, while the contents of chelate-soluble pectins (CSP), Na2CO3-soluble pectins (NSP) and hemicelluloses (HE) decreased during post-harvest ripening by 60 %, 43 %, and 61 %, respectively. The drying time increased from 3.5 to 5.5 h when the post-harvest time increased from 0 to 6 days. Atomic force microscope analysis showed that depolymerization of hemicelluloses and pectin occurred during post-harvest ripening. Time Domain -NMR observations indicated that reorganization of cell wall polysaccharides nanostructure changed water spatial distribution and cell internal structure, facilitated moisture migration, and affected antioxidant capacity of peaches during drying. This leads to the redistribution of flavor substances (heptanal, n-nonanal dimer and n-nonanal monomer). The current work elucidates the effect of post-harvest ripening on the physiochemical properties and drying behavior of peaches.
Collapse
Affiliation(s)
- Jia-Bao Ni
- College of Engineering, China Agricultural University, P.O. Box 194 17 Qinghua Donglu, Beijing 100083, China
| | - Magdalena Zielinska
- Department of Systems Engineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, 100093, China.
| | - Xiao-Ming Fang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing, China
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Suo-Bin Li
- Love Nest Biotechnology (Changzhou) Co., LTD, Changzhou 213017, Jiangsu, China
| | - Xiang-Xin Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing, China
| | - Hui Wang
- College of Engineering, China Agricultural University, P.O. Box 194 17 Qinghua Donglu, Beijing 100083, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194 17 Qinghua Donglu, Beijing 100083, China
| |
Collapse
|
6
|
Comparative Study on the Influence of Various Drying Techniques on Drying Characteristics and Physicochemical Quality of Garlic Slices. Foods 2023; 12:foods12061314. [PMID: 36981240 PMCID: PMC10047973 DOI: 10.3390/foods12061314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/22/2023] Open
Abstract
Effects of vacuum freeze drying (VFD), air impingement drying (AID), hot air drying based on temperature and humidity control (TH-HAD), pulsed vacuum drying (PVD), and medium- and short-wave infrared radiation drying (MSIRD) on the drying characteristics and physicochemical properties of garlic slices were investigated in the current work. Based on the experimental results, the Weibull model fitted the experimental results better (R2 > 0.99) than the Wang and Singh model. Samples dried with PVD showed the smallest color difference (ΔE*), better rehydration capacity and desirable reducing sugar content. In response to thermal effects and pressure pulsations, the cell walls gradually degraded, and the cell and organelle membranes ruptured. The allicin and soluble pectin contents of garlic slices treated with PVD were higher by 8.0–252.3% and 49.5–92.2%, respectively, compared to those of the samples dried by other techniques. VFD maintained a complete garlic slice structure with the minimum shrinkage and the best appearance. The MSIRD process produced the densest structure, and caused an additional loss of color and phytochemical contents. The findings in current work implied that PVD could be a promising drying technique for garlic slices.
Collapse
|
7
|
Park SY, Kang M, Yun SM, Eun JB, Shin BS, Chun HH. Changes and machine learning-based prediction in quality characteristics of sliced Korean cabbage (Brassica rapa L. pekinensis) kimchi: Combined effect of nano-foamed structure film packaging and subcooled storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Wang H, Li X, Wang J, Vidyarthi SK, Wang H, Zhang XG, Gao L, Yang KW, Zhang JS, Xiao HW. Effects of postharvest ripening on water status and distribution, drying characteristics, volatile profiles, phytochemical contents, antioxidant capacity and microstructure of kiwifruit (Actinidia deliciosa). Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|