1
|
Cao Q, Fan X, Xu J, Shi Z, Wang W, Wang Z, Sun Y, Xia Q, Zhou C, Pan D. Insights into the molecular mechanisms of lipid metabolism of air-dried goose on the formation of flavor substances by co-inoculation of lactic acid bacteria and staphylococcus based on GC-MS and lipidomics. Food Chem 2024; 463:141388. [PMID: 39342771 DOI: 10.1016/j.foodchem.2024.141388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Microorganisms and lipids always interact in a complex way in the meat matrix, which affects the flavor of meat products. This study aimed to examine the impact of complex fermentation with distinct microorganisms on fat oxidation, lipid profile, and the biochemical pathways involved in flavor substance formation. GC-MS analysis revealed that 12 key volatile substances including hexanal, heptanal, benzeneacetaldehyde, decanal, 1-nonanol, 1-hexanol, 1-octen-3-ol were responsible for the flavor variations in geese. Lipidomics analysis of three groups identified 440 lipid molecules, with triglycerides and glycerophospholipids being the most abundant categories. Spearman correlation analysis showed that 4 key volatile substances exhibited positive correlations with lysophosphatidylethanolamines, lysophosphatidycholines, phosphatidylcholines, phosphatidylethanolamines. The data presented herein facilitate an understanding of the lipid dynamics during fermentation and provide insights into the potential for controlling the flavor quality of fermented air-dried meat products.
Collapse
Affiliation(s)
- Qiongfang Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiankang Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China.
| | - Jue Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zihang Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, China
| | - Zhaoshan Wang
- Jiangsu Ecolovo Food Limited Company, Suqian 223800, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Zhang J, Chen X, Cao J, Geng A, Chu Q, Yan Z, Zhang Y, Liu H. Metabolomics Reveals Glycerophospholipids, Peptides, and Flavonoids Contributing to Breast Meat Flavor and Benefit Properties of Beijing-You Chicken. Foods 2024; 13:2549. [PMID: 39200476 PMCID: PMC11354068 DOI: 10.3390/foods13162549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Unique metabolites contribute to the performance of meat flavor and potential function. In this study, UHPLC-Q Exactive HF-X-based metabolomics and multivariate analysis were applied to explore the characteristic metabolites in the breast meat of Beijing-You chicken (BYC) aged 150, 300, and 450 days (D150, D300, and D450). Based on the criteria of variable importance in the projection (VIP) > 1 and p < 0.05, a total of 154 and 97 differential metabolites (DMs) were screened out compared with D450 (D450 vs. D150, D450 vs. D300), respectively. In general, the relative content of carnosine, L-L-homoglutathione, demethyloleuropein, neohesperidin dihydrochalcone, 7-chloro-2-(3,4-dimethoxyphenyl)-3,5-dihydroxy-6,8-dimethoxy-4H-chromen-4-one, glycerophospholipids, exhibited the highest abundance at D450, while balenine, anserine, L-beta-aspartyl-L-leucine, glutathione, oxidized glutathione, stearoylcarnitine, ganoderic acid alpha, oleuroside, Lysoglycerophospholipid species (LGP) presented a downward trend with age. These 210 DMs were involved in 10 significantly enriched pathways related to the synthesis and metabolism of amino acids, peptides, and glycerophospholipid, such as glutathione metabolism, histidine metabolism, glycerophospholipid metabolism, arginine biosynthesis, tyrosine metabolism, and lysine degradation. In conclusion, this work could not only facilitate a better understanding of the differences of chicken flavor and benefit properties with age, but also provide potential valuable bioactive compounds for further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (X.C.); (J.C.); (A.G.); (Q.C.); (Z.Y.); (Y.Z.)
| |
Collapse
|
3
|
Xu C, Yin Z. Unraveling the flavor profiles of chicken meat: Classes, biosynthesis, influencing factors in flavor development, and sensory evaluation. Compr Rev Food Sci Food Saf 2024; 23:e13391. [PMID: 39042376 DOI: 10.1111/1541-4337.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024]
Abstract
Chicken is renowned as the most affordable meat option, prized by consumers worldwide for its unique flavor, and universally recognized for its essential savory flavor. Current research endeavors are increasingly dedicated to exploring the flavor profile of chicken meat. However, there is a noticeable gap in comprehensive reviews dedicated specifically to the flavor quality of chicken meat, although existing reviews cover meat flavor profiles of various animal species. This review aims to fill this gap by synthesizing knowledge from published literature to describe the compounds, chemistry reaction, influencing factors, and sensory evaluation associated with chicken meat flavor. The flavor compounds in chicken meat mainly included water-soluble low-molecular-weight substances and lipids, as well as volatile compounds such as aldehydes, ketones, alcohols, acids, esters, hydrocarbons, furans, nitrogen, and sulfur-containing compounds. The significant synthesis pathways of flavor components were Maillard reaction, Strecker degradation, lipid oxidation, lipid-Maillard interaction, and thiamine degradation. Preslaughter factors, including age, breed/strain, rearing management, muscle type, and sex of chicken, as well as postmortem conditions such as aging, cooking conditions, and low-temperature storage, were closely linked to flavor development and accounted for the significant differences observed in flavor components. Moreover, the sensory methods used to evaluate the chicken meat flavor were elaborated. This review contributes to a more comprehensive understanding of the flavor profile of chicken meat. It can serve as a guide for enhancing chicken meat flavor quality and provide a foundation for developing customized chicken products.
Collapse
Affiliation(s)
- Chunhui Xu
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Jia W, Guo A, Bian W, Zhang R, Wang X, Shi L. Integrative deep learning framework predicts lipidomics-based investigation of preservatives on meat nutritional biomarkers and metabolic pathways. Crit Rev Food Sci Nutr 2023:1-15. [PMID: 38127336 DOI: 10.1080/10408398.2023.2295016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Preservatives are added as antimicrobial agents to extend the shelf life of meat. Adding preservatives to meat products can affect their flavor and nutrition. This review clarifies the effects of preservatives on metabolic pathways and network molecular transformations in meat products based on lipidomics, metabolomics and proteomics analyses. Preservatives change the nutrient content of meat products via altering ionic strength and pH to influence enzyme activity. Ionic strength in salt triggers muscle triglyceride hydrolysis by causing phosphorylation and lipid droplet splitting in adipose tissue hormone-sensitive lipase and triglyceride lipase. DisoLipPred exploiting deep recurrent networks and transfer learning can predict the lipid binding trend of each amino acid in the disordered region of input protein sequences, which could provide omics analyses of biomarkers metabolic pathways in meat products. While conventional meat quality assessment tools are unable to elucidate the intrinsic mechanisms and pathways of variables in the influences of preservatives on the quality of meat products, the promising application of omics techniques in food analysis and discovery through multimodal learning prediction algorithms of neural networks (e.g., deep neural network, convolutional neural network, artificial neural network) will drive the meat industry to develop new strategies for food spoilage prevention and control.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Agricultural Product Processing and Inspection Center, Shaanxi Testing Institute of Product Quality Supervision, Xi'an, Shaanxi, China
- Agricultural Product Quality Research Center, Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
- Food Safety Testing Center, Shaanxi Sky Pet Biotechnology Co., Ltd, Xi'an, China
| | - Aiai Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenwen Bian
- Agricultural Product Processing and Inspection Center, Shaanxi Testing Institute of Product Quality Supervision, Xi'an, Shaanxi, China
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
5
|
Cao Y, Xing Y, Guan H, Ma C, Jia Q, Tian W, Li G, Tian Y, Kang X, Liu X, Li H. Genomic Insights into Molecular Regulation Mechanisms of Intramuscular Fat Deposition in Chicken. Genes (Basel) 2023; 14:2197. [PMID: 38137019 PMCID: PMC10742768 DOI: 10.3390/genes14122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Intramuscular fat (IMF) plays an important role in the tenderness, water-holding capacity, and flavor of chicken meat, which directly affect meat quality. In recent years, regulatory mechanisms underlying IMF deposition and the development of effective molecular markers have been hot topics in poultry genetic breeding. Therefore, this review focuses on the current understanding of regulatory mechanisms underlying IMF deposition in chickens, which were identified by multiple genomic approaches, including genome-wide association studies, whole transcriptome sequencing, proteome sequencing, single-cell RNA sequencing (scRNA-seq), high-throughput chromosome conformation capture (HiC), DNA methylation sequencing, and m6A methylation sequencing. This review comprehensively and systematically describes genetic and epigenetic factors associated with IMF deposition, which provides a fundamental resource for biomarkers of IMF deposition and provides promising applications for genetic improvement of meat quality in chicken.
Collapse
Affiliation(s)
- Yuzhu Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Yuxin Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Hongbo Guan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Chenglin Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Qihui Jia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
6
|
Yin L, Chen Q, Huang Q, Wang X, Zhang D, Lin Z, Wang Y, Liu Y. Physiological role of dietary energy in the sexual maturity: clues of body size, gonad development, and serum biochemical parameters of Chinese indigenous chicken. Poult Sci 2023; 102:103157. [PMID: 37862869 PMCID: PMC10590745 DOI: 10.1016/j.psj.2023.103157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023] Open
Abstract
Sexual maturity is a crucial factor in the formation and development of poultry reproductive capacity. The nutritional status has been confirmed to play an important role in the regulation of sexual maturity. To investigate the effect of dietary energy levels on sexual maturity in chicken, diets with 3 energy levels (group L: 2,573 kcal/kg, group C: 2,836 kcal/kg, group H: 3,122 kcal/kg) were implemented to feed Guangyuan Gray chickens. During this trial, body weight, body size, organ development, sexual maturity, reproductive performance and blood biochemical parameters were monitored. The earlier sexual maturity was observed in group H, as well as a heavier first egg weight, larger interpubic distance and higher total cholesterol (T-CHO) content at sexual maturity. The dietary energy levels had no significant effect on body weight at first egg and egg production at 300 d of age. Although dietary energy levels had a significant effect on body weight, comb length, tibia length and girth, abdominal fat weight, oviduct weight and length, T-CHO, triglyceride (TG) content and estradiol (E2) level during the rearing period. No significant difference of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) level among 3 groups was observed during the trial. The dietary energy levels had effects on mRNA expression of GnRH, estrogen receptor 1 (ESR1), estrogen receptor 2 (ESR2) in hypothalamus, gonadotropin inhibitory hormone receptor (GnIHR) in pituitary and luteinizing hormone receptor (LHR), ESR2 in ovary. The GnIHR/GnRHR ratio in pituitary was higher before sexual maturity and decreased at sexual maturity. The results of correlations analysis found that all the body size, carcass traits, serum biochemical parameters negatively correlated with age at first egg except for interpubic distance and serum blood glucose content. Collectively, dietary energy levels had effects on sexual maturity of chicken, which may be achieved by affecting body weight, gonad development, endocrine and the mRNA expression of genes related to hypothalamus-pituitary-gonad axis. These results further set our understanding of how dietary energy regulates sexual maturity.
Collapse
Affiliation(s)
- Lingqian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinke Huang
- Guangyuan Municipal Bureau of Agriculture and Rural Affairs, Guangyuan 628000, Sichuan, China
| | - Xinyu Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Donghao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
7
|
Liu L, Chen Q, Yin L, Tang Y, Lin Z, Zhang D, Liu Y. A Comparison of the Meat Quality, Nutritional Composition, Carcass Traits, and Fiber Characteristics of Different Muscular Tissues between Aged Indigenous Chickens and Commercial Laying Hens. Foods 2023; 12:3680. [PMID: 37835333 PMCID: PMC10573064 DOI: 10.3390/foods12193680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of this study is to assess the differences in the meat quality, nutritional composition, carcass traits, and myofiber characteristics between Hy-Line grey chickens (HLG, commercial breed) and Guangyuan grey chickens (GYG, indigenous breed). A total of 20 55-week-old chickens were selected for slaughter. The HLG exhibited a larger carcass weight, breast muscle weight, and abdominal fat weight (p < 0.05). The GYG exhibited a higher crude protein content, lower shear force, and smaller fiber size in the thigh muscles, whereas the HLG presented higher pH values and lower inosine-5'-monophosphate content in the breast muscles (p < 0.05). Darker meat based on higher redness and yellowness values was observed in the GYG instead of the HLG (p < 0.05). The research results also revealed parameter differences between different muscle types. Simultaneously, a correlation analysis showed significant correlations between the meat quality traits and myofiber characteristics (p < 0.05). In conclusion, aged indigenous chickens perform better in terms of tenderness and nutritional value in the thigh muscles, and may exhibit a better flavor in the breast muscles, but have a smaller breast muscle weight. Therefore, the current investigation provides a theoretical basis for the different needs of consumers and the processing of meat from old laying hens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Wang D, Qin P, Zhang K, Wang Y, Guo Y, Cheng Z, Li Z, Tian Y, Kang X, Li H, Liu X. Integrated LC/MS-based lipidomics and transcriptomics analyses revealed lipid composition heterogeneity between pectoralis intramuscular fat and abdominal fat and its regulatory mechanism in chicken. Food Res Int 2023; 172:113083. [PMID: 37689861 DOI: 10.1016/j.foodres.2023.113083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 09/11/2023]
Abstract
Intramuscular fat (IMF) content is conducive to multiple meat quality properties, while abdominal fat (AF) is treated as waste product in chicken industry. However, the heterogeneity and distinct regulatory mechanisms of lipid composition between the IMF and AF are still unclear. In this study, we carried out non-targeted lipidomics analyses of pectoralis IMF and AF, and detected a total of 423 differential lipid molecules (DLMs) between chicken IMF and AF, including 307 up-regulated and 116 down-regulated DLMs in pectoral IMF. These DLMs exhibited the definite alteration of lipid composition. The up-reglated DLMs in IMF were mainly glycerophospholipids (GPs), including the bulk of phosphatidylcholines (PC, PC (P) and PC (O)), phosphatidylethanolamines (PE, PE (P) and PE (O)), phosphatidylglycerols (PG) and phosphatidylinositol (PI), while the up-reglated DLMs in AF were mainly glycerolipids (GLs), including most of triacylglycerols (TG) and diacylglycerols (DG). We further identified 28 main DLMs contributing to the heterogeneous deposition of IMF and AF, including 11 TGs common to IMF and AF, 12 PCs/PC (P)s specific to IMF and 5 DGs specific to AF. Further integration of transcriptome with the main DLMs by weighted gene co-expression network analysis (WGCNA), we found five key gene sets that included 386 unique genes promoting IMF deposition in pectoralis, 213 unique genes promoting AF deposition, 6 unique genes detrimental to AF deposition, 7 common genes that promote IMF deposition in pectoralis while adversely affect AF deposition, and 28 genes that only promoted IMF deposition in pectoralis but had no effect on AF deposition. In addition, we also observed the expression characteristics of key genes in vivo and in vitro, and found that transmembrane protein family gene TMEM164 might be mainly involved in the positive regulation of intramuscular fat deposition in pectoralis and zinc finger protein family gene ZNF488 had a potential unique positive regulatory function on abdominal fat deposition. These findings provide new perspectives for understanding IMF and AF heterodeposition and will serve as a valuable information resource for improving meat quality via breeding selection in chicken.
Collapse
Affiliation(s)
- Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Panpan Qin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ke Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yangyang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhimin Cheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China.
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China.
| |
Collapse
|
9
|
Li J, Huang Q, Yang C, Yu C, Zhang Z, Chen M, Ren P, Qiu M. Molecular Regulation of Differential Lipid Molecule Accumulation in the Intramuscular Fat and Abdominal Fat of Chickens. Genes (Basel) 2023; 14:1457. [PMID: 37510361 PMCID: PMC10379444 DOI: 10.3390/genes14071457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Reducing abdominal fat (AF) accumulation and increasing the level of intramuscular fat (IMF) simultaneously is a major breeding goal in the poultry industry. To explore the different molecular mechanisms underlying AF and IMF, gene expression profiles in the breast muscle (BM) and AF from three chicken breeds were analyzed. A total of 4737 shared DEGs were identified between BM and AF, of which 2602 DEGs were upregulated and 2135 DEGs were downregulated in the BM groups compared with the AF groups. DEGs involved in glycerophospholipid metabolism and glycerolipid metabolism were potential regulators, resulting in the difference in lipid metabolite accumulation between IMF and AF. The PPAR signaling pathway was the most important pathway involved in tissue-specific lipid deposition. Correlation analysis showed that most representative DEGs enriched in the PPAR signaling pathway, such as FABP5, PPARG, ACOX1, and GK2, were negatively correlated with PUFA-enriched glycerophospholipid molecules. Most DEGs related to glycerophospholipid metabolism, such as GPD2, GPD1, PEMT, CRLS1, and GBGT1, were positively correlated with glycerophospholipid molecules, especially DHA- and arachidonic acid (ARA)-containing glycerophospholipid molecules. This study elucidated the molecular mechanism underlying tissue-specific lipid deposition and poultry meat quality.
Collapse
Affiliation(s)
- Jingjing Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qinke Huang
- Guangyuan City Animal Husbandry Seed Management Station, Guangyuan 628107, China
| | - Chaowu Yang
- Sichuan Animal Science Academy, Chengdu 610066, China
| | - Chunlin Yu
- Sichuan Animal Science Academy, Chengdu 610066, China
| | | | - Meiying Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Mohan Qiu
- Sichuan Animal Science Academy, Chengdu 610066, China
| |
Collapse
|
10
|
Yin L, Liu L, Tang Y, Chen Q, Zhang D, Lin Z, Wang Y, Liu Y. The Implications in Meat Quality and Nutrition by Comparing the Metabolites of Pectoral Muscle between Adult Indigenous Chickens and Commercial Laying Hens. Metabolites 2023; 13:840. [PMID: 37512547 PMCID: PMC10384229 DOI: 10.3390/metabo13070840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Aged chickens are often a secondary dietary choice, owing to the poor organoleptic qualities of their meat. With regard to the meat quality of chickens, the metabolic profiles of pectoral muscle in Guangyuan grey chickens (group G) and Hy-Line grey hens (group H) aged 55 weeks were compared via ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). A total of 74 metabolites were identified with differential changes in the ion model. Lipids and lipid-like molecules comprised the largest proportion among the different metabolites. The content of myristic acid and palmitic acid were found to be higher in the pectoral muscle of group G, while group H showed significantly higher levels of glycerophospholipid molecules, such as LPC(18:2/0:0), Pi(38:5), Pc(16:0/16:0), and Pe(16:1e/14-hdohe). KEGG pathway analysis indicated that the abundant metabolites in group G were mainly involved in energy metabolism and fatty acid biosynthesis and metabolism, whereas those of group H were mainly attributed to the metabolism of unsaturated fatty acids and amino acids. Overall, the differences in lipid and amino acid metabolism in pectoral muscle appear to be responsible for the difference in meat quality between indigenous chickens and commercial laying hens.
Collapse
Affiliation(s)
- Lingqian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Donghao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
Lv J, Ma J, Liu Y, Li P, Wang D, Geng Z, Xu W. Lipidomics analysis of Sanhuang chicken during cold storage reveals possible molecular mechanism of lipid changes. Food Chem 2023; 417:135914. [PMID: 36933423 DOI: 10.1016/j.foodchem.2023.135914] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Lipidomic profiles changes of the Sanhuang chicken breast meat during cold storage (4 °C) were analyzed using ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS)-based lipidomic analysis. Total lipids content decreased 16.8% after storage. Triacylglycerol (TAG), phosphatidylcholine (PC) and phosphatidylethanolamine (PE) significantly decreased, while lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) increased. Particularly, there was a trend that TAGs with fatty acids of 16:0 and 18:1, and phospholipids containing 18:1, 18:2 and 20:4 were more likely to be downregulated. The increase in the ratio of lysophospholipids/phospholipids and the degree of lipid oxidation demonstrated oxidation and enzymatic hydrolysis are potentially responsible for the lipid transformation. Moreover, 12 lipid species (P < 0.05, VIP > 1, FC < 0.8 or >1.25) were identified to be associated with the spoilage of meat. Glycerophospholipid metabolism and linoleic acid metabolism were the key metabolic pathways involved in the lipid transformations of chilled chicken.
Collapse
Affiliation(s)
- Jingxiu Lv
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, PR China
| | - Jingjing Ma
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Yu Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| | - Pengpeng Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, PR China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, PR China.
| | - Zhiming Geng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| | - Weimin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| |
Collapse
|
12
|
Liu R, Jin Y, Liu B, Zhang Q, Li X, Cai D, Tian L, Jiang X, Zhang W, Sun J, Bai W. Untargeted Lipidomics Revealed the Protective Effects of Cyanidin-3- O-glucoside on Bisphenol A-Induced Liver Lipid Metabolism Disorder in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1077-1090. [PMID: 36597173 DOI: 10.1021/acs.jafc.2c06849] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bisphenol A (BPA) is an estrogenic endocrine disruptor that induces metabolic disorders. Cyanidin-3-O-glucoside (C3G) has multiple functional activities and is the most abundant anthocyanin belonging to the flavonoid subgroup. This study aimed to investigate the protective effect of C3G on BPA-induced liver lipid metabolism disorder and explore its mechanism via lipidomics analysis. The results showed that C3G supplementation significantly ameliorated the serum levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol, triacylglycerols (TG), and alanine and aspartate aminotransferase (ALT and AST). Furthermore, liver lipidomics indicated that C3G effectively facilitated the recovery of differential lipid metabolites, including TGs, phosphatidylethanolamines, phosphatidylcholines, lysophosphatidylcholines, phosphatidylinositol, cholesteryl esters, and phosphatidylserine, and reversed the levels of hepatic lipid synthesis-related genes. Our results suggest that C3G has an effective regulatory effect on BPA-induced disorders of lipid metabolism.
Collapse
Affiliation(s)
- Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yulong Jin
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Boping Liu
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qing Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Wenbao Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
13
|
Li Q, Yang L, Li R, Chen G, Dong J, Wu L, Fu Y, Yang J. Lipid analysis of meat from Bactrian camel ( Camelus bacterianus), beef, and tails of fat-tailed sheep using UPLC-Q-TOF/MS based lipidomics. Front Nutr 2023; 10:1053116. [PMID: 36937354 PMCID: PMC10017991 DOI: 10.3389/fnut.2023.1053116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction As a source of low-cost and high-quality meat for human beings, the consumption of camel meat was increasing, and beef has similar texture and nutritional characteristics with camel meat. Camel hump and fatty-tails are important parts of fat storage for camels and fat-tailed lambs, respectively, which were to adapt and endure harsh environments. Considering their similar physiological functions, their fat composition might be similar. Lipidomics is a system-level analysis of lipids method, which play an important role in the determination and quantification of individual lipid molecular specie, food adulteration and labeling. Methods A GC/MS was used to analyze fatty acids composition of Xinjiang Bactrian camel meat, hump, beef, and fatty-tails. UPLC-Q-TOF/MS based on lipidomics approach was used to analyze lipid composition, characterize and examine the lipid differences in Xinjiang Bactrian camel meat, hump, beef, and fatty-tails. Results and discussion The major fatty acids of the four samples were C16:0, C18:0, and C18:1cis, and camel meat had a significant low SFA content and high MUFA content. A total of 342 lipid species were detected, 192, 64, and 79 distinguishing lipids were found in the groups camel hump compared to camel meat, camel meat compared to beef, and camel hump compared to fatty-tails, respectively. Lipid metabolisms of ether lipid, glycerophospholipid, glycerolipid, and sphingolipid were the most influential pathways revealed by KEGG analysis. The results contributed to enrich the lipid information of Bactrian camel meat, and indicated that UPLC-Q-TOF/MS based on lipidomics was an alternative method to distinguish meat samples.
Collapse
Affiliation(s)
- Qingqing Li
- College of Life Science and Technology, Xinjiang University, Ürümqi, China
| | - Li Yang
- College of Life Science and Technology, Xinjiang University, Ürümqi, China
| | - Rongrong Li
- College of Life Science and Technology, Xinjiang University, Ürümqi, China
| | - Gangliang Chen
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Jing Dong
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Linying Wu
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Yinghua Fu
- College of Life Science and Technology, Xinjiang University, Ürümqi, China
- *Correspondence: Yinghua Fu
| | - Jie Yang
- College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Jie Yang
| |
Collapse
|
14
|
FTIR-PCA Approach on Raw and Thermally Processed Chicken Lipids Stabilized by Nano-Encapsulation in β-Cyclodextrin. Foods 2022; 11:foods11223632. [PMID: 36429225 PMCID: PMC9689604 DOI: 10.3390/foods11223632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
This study evaluated similarities/dissimilarities of raw and processed chicken breast and thigh lipids that were complexed by β-cyclodextrin, using a combined FTIR-PCA technique. Lipid fractions were analyzed as non-complexed and β-cyclodextrin-complexed samples via thermogravimetry, differential scanning calorimetry and ATR-FTIR. The lipid complexation reduced the water content to 7.67-8.33%, in comparison with the β-cyclodextrin hydrate (~14%). The stabilities of the complexes and β-cyclodextrin were almost the same. ATR-FTIR analysis revealed the presence of important bands that corresponded to the C=O groups (1743-1744 cm-1) in both the non-complexed and nano-encapsulated lipids. Furthermore, the bands that corresponded to the vibrations of double bonds corresponding to the natural/degraded (cis/trans) fatty acids in lipids appeared at 3008-3011 and 938-946 cm-1, respectively. The main FTIR bands that were involved in the discrimination of raw and processed chicken lipids, and of non-complexed and complexed lipids, were evaluated with PCA. The shifting of specific FTIR band wavenumbers had the highest influence, especially vibrations of the α(1→4) glucosidic bond in β-cyclodextrin for PC1, and CH2/3 groups from lipids for PC2. This first approach on β-cyclodextrin nano-encapsulation of chicken lipids revealed the possibility to stabilize poultry fatty components for further applications in various ingredients for the food industry.
Collapse
|