1
|
Adnan M, Siddiqui AJ, Ashraf SA, Ashraf MS, Alomrani SO, Alreshidi M, Tepe B, Sachidanandan M, Danciu C, Patel M. Saponin-Derived Silver Nanoparticles from Phoenix dactylifera (Ajwa Dates) Exhibit Broad-Spectrum Bioactivities Combating Bacterial Infections. Antibiotics (Basel) 2023; 12:1415. [PMID: 37760712 PMCID: PMC10525761 DOI: 10.3390/antibiotics12091415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of antibiotic resistance poses a serious threat to humankind, emphasizing the need for alternative antimicrobial agents. This study focuses on investigating the antibacterial, antibiofilm, and anti-quorum-sensing (anti-QS) activities of saponin-derived silver nanoparticles (AgNPs-S) obtained from Ajwa dates (Phoenix dactylifera L.). The design and synthesis of these novel nanoparticles were explored in the context of developing alternative strategies to combat bacterial infections. The Ajwa date saponin extract was used as a reducing and stabilizing agent to synthesize AgNPs-S, which was characterized using various analytical techniques, including UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The biosynthesized AgNPs-S exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria due to their capability to disrupt bacterial cell membranes and the leakage of nucleic acid and protein contents. The AgNPs-S effectively inhibited biofilm formation and quorum-sensing (QS) activity by interfering with QS signaling molecules, which play a pivotal role in bacterial virulence and pathogenicity. Furthermore, the AgNPs-S demonstrated significant antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and cytotoxicity against small lung cancer cells (A549 cells). Overall, the findings of the present study provide valuable insights into the potential use of these nanoparticles as alternative therapeutic agents for the design and development of novel antibiotics. Further investigations are warranted to elucidate the possible mechanism involved and safety concerns when it is used in vivo, paving the way for future therapeutic applications in combating bacterial infections and overcoming antibiotic resistance.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Syed Amir Ashraf
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Mohammad Saquib Ashraf
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Riyadh ELM University, Riyadh 12734, Saudi Arabia
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran 66252, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Bektas Tepe
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Kilis 7 Aralik University, TR-79000 Kilis, Turkey
| | - Manojkumar Sachidanandan
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
- Department of Oral Radiology, College of Dentistry, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| |
Collapse
|
2
|
Exploring Possible Ways to Enhance the Potential and Use of Natural Products through Nanotechnology in the Battle against Biofilms of Foodborne Bacterial Pathogens. Pathogens 2023; 12:pathogens12020270. [PMID: 36839543 PMCID: PMC9967150 DOI: 10.3390/pathogens12020270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Biofilms enable pathogenic bacteria to survive in unfavorable environments. As biofilm-forming pathogens can cause rapid food spoilage and recurrent infections in humans, especially their presence in the food industry is problematic. Using chemical disinfectants in the food industry to prevent biofilm formation raises serious health concerns. Further, the ability of biofilm-forming bacterial pathogens to tolerate disinfection procedures questions the traditional treatment methods. Thus, there is a dire need for alternative treatment options targeting bacterial pathogens, especially biofilms. As clean-label products without carcinogenic and hazardous potential, natural compounds with growth and biofilm-inhibiting and biofilm-eradicating potentials have gained popularity as natural preservatives in the food industry. However, the use of these natural preservatives in the food industry is restricted by their poor availability, stability during food processing and storage. Also there is a lack of standardization, and unattractive organoleptic qualities. Nanotechnology is one way to get around these limitations and as well as the use of underutilized bioactives. The use of nanotechnology has several advantages including traversing the biofilm matrix, targeted drug delivery, controlled release, and enhanced bioavailability, bioactivity, and stability. The nanoparticles used in fabricating or encapsulating natural products are considered as an appealing antibiofilm strategy since the nanoparticles enhance the activity of the natural products against biofilms of foodborne bacterial pathogens. Hence, this literature review is intended to provide a comprehensive analysis of the current methods in nanotechnology used for natural products delivery (biofabrication, encapsulation, and nanoemulsion) and also discuss the different promising strategies employed in the recent and past to enhance the inhibition and eradication of foodborne bacterial biofilms.
Collapse
|
3
|
Crugeira PJL, Almeida HHS, Teixeira LG, Barreiro MF. Photodynamic inactivation of Staphylococcus aureus by ecological antibacterial solutions associating LED (ʎ 450 ± 10 nm) with curcumin and olive leaf extracts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112626. [PMID: 36512898 DOI: 10.1016/j.jphotobiol.2022.112626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance is a problem in contemporary society, with Staphylococcus aureus standing out as a threat due to its ability to colonize, its pathogenicity, and its expression of several virulence factors. In this context, antimicrobial photodynamic inactivation (aPDI) emerges as an alternative to conventional microbicidal or microbiostatic systems, enabling numerous and successive applications without developing side effects and microbial resistance. In this context, an aPDI system against cultures of S. aureus based on a water-in-oil (W/O) emulsion incorporating curcumin as the photosensitizer (PS), with and without olive leaf extract (OLE), was developed and the antibacterial efficacy evaluated under LED activation (ʎ450 ± 10 nm) by depositing an energy density of 14 J/cm2. The produced emulsified systems showed no significant differences in the droplet size and morphology, remaining stable along the tested period of 30 days. The bacterial reduction achieved after the first aPDI application for the emulsions added with curcumin and curcumin combined with the OLE was 5 log10 CFU.mL-1 and 6 log10 CFU.mL-1, respectively, revealing a significant difference between the two groups (p < 0.0001). After the second aPDI application, an increased microbial reduction (7 log10 CFU.mL-1) was observed for both studied groups even with a low significant difference (p < 0.05). The PS loading through an emulsified system for aPDI obtained a bactericidal action against S. aureus, increased by applying two aPDI, showing a significant synergy between photodynamic inactivation, OLE delivery and antibacterial activity. In addition, the developed solutions were produced using natural products by an ecologically correct process.
Collapse
Affiliation(s)
- Pedro J L Crugeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Heloísa H S Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Liandra G Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - M Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
4
|
Yum SJ, Jeong HG, Kim SM. Anti-biofilm effects of sinomenine against Staphylococcus aureus. Food Sci Biotechnol 2023; 32:83-90. [PMID: 36606087 PMCID: PMC9807730 DOI: 10.1007/s10068-022-01174-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is a gram-positive foodborne pathogen capable of forming strong biofilms. This study identified that anti-biofilm natural compound against S. aureus. Sinomenine, a natural compound, showed significantly reduced biofilm formation (31.97-39.86%), but no effect on bacterial growth was observed. The dispersion of preformed biofilms was observed by confocal laser scanning microscopy (CLSM). qRT-PCR revealed that sinomenine treatment significantly up-regulated agrA by 3.8-fold and down-regulated icaA gene by 3.1-fold. These indicate that sinomenine treatment induces biofilm dispersal due to cell-cell adhesion, polysaccharide intercellular adhesin (PIA), and phenol-soluble modulin (PSM) peptides production. Our results suggest that sinomenine can be used as a promising agent for effectively controlling biofilm formation and dispersion, thereby making S. aureus more susceptible to the action of antimicrobial agents.
Collapse
Affiliation(s)
- Su-Jin Yum
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134 Korea
| | - Hee Gon Jeong
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134 Korea
| | - Seung Min Kim
- Division of Human Ecology, Korea National Open University, Seoul, 03087 Korea
| |
Collapse
|
5
|
Alain KY, Tamfu AN, Kucukaydin S, Ceylan O, Cokou Pascal AD, Félicien A, Koko Dominique SC, Duru ME, Dinica RM. Phenolic profiles, antioxidant, antiquorum sensing, antibiofilm and enzyme inhibitory activities of selected Acacia species collected from Benin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|