1
|
Calder PC, Bosco N, Bourdet-Sicard R, Capuron L, Delzenne N, Doré J, Franceschi C, Lehtinen MJ, Recker T, Salvioli S, Visioli F. Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res Rev 2017; 40:95-119. [PMID: 28899766 DOI: 10.1016/j.arr.2017.09.001] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
Ageing of the global population has become a public health concern with an important socio-economic dimension. Ageing is characterized by an increase in the concentration of inflammatory markers in the bloodstream, a phenomenon that has been termed "inflammageing". The inflammatory response is beneficial as an acute, transient reaction to harmful conditions, facilitating the defense, repair, turnover and adaptation of many tissues. However, chronic and low grade inflammation is likely to be detrimental for many tissues and for normal functions. We provide an overview of low grade inflammation (LGI) and determine the potential drivers and the effects of the "inflamed" phenotype observed in the elderly. We discuss the role of gut microbiota and immune system crosstalk and the gut-brain axis. Then, we focus on major health complications associated with LGI in the elderly, including mental health and wellbeing, metabolic abnormalities and infections. Finally, we discuss the possibility of manipulating LGI in the elderly by nutritional interventions. We provide an overview of the evidence that exists in the elderly for omega-3 fatty acid, probiotic, prebiotic, antioxidant and polyphenol interventions as a means to influence LGI. We conclude that slowing, controlling or reversing LGI is likely to be an important way to prevent, or reduce the severity of, age-related functional decline and the onset of conditions affecting health and well-being; that there is evidence to support specific dietary interventions as a strategy to control LGI; and that a continued research focus on this field is warranted.
Collapse
Affiliation(s)
- Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Nabil Bosco
- Nestlé Research Center Asia, 21 Biopolis Road, 138567, Singapore
| | | | - Lucile Capuron
- INRA, Nutrition and Integrative Neurobiology, 33076 Bordeaux, France; Nutrition and Integrative Neurobiology (NutriNeuro), UMR 1286, University of Bordeaux, 33076 Bordeaux, France
| | - Nathalie Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Catholic University of Louvain, B-1200 Brussels, Belgium
| | - Joel Doré
- MetaGénoPolis, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna 40124, Italy
| | - Markus J Lehtinen
- DuPont Nutrition and Health, Global Health and Nutrition Science, 02460 Kantvik, Finland
| | - Tobias Recker
- International Life Sciences Institute European Branch, 1200 Brussels, Belgium.
| | - Stefano Salvioli
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; IMDEA-Food, 28049 Madrid, Spain
| |
Collapse
|
2
|
Farrell TL, McGuire TR, Bilek LD, Brusnahan SK, Jackson JD, Lane JT, Garvin KL, O'Kane BJ, Berger AM, Tuljapurkar SR, Kessinger MA, Sharp JG. Changes in the frequencies of human hematopoietic stem and progenitor cells with age and site. Exp Hematol 2014; 42:146-54. [PMID: 24246745 PMCID: PMC3944726 DOI: 10.1016/j.exphem.2013.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/24/2013] [Accepted: 11/06/2013] [Indexed: 01/28/2023]
Abstract
This study enumerated CD45(hi)/CD34(+) and CD45(hi)/CD133(+) human hematopoietic stem cells (HSCs) and progenitor granulocyte-macrophage colony forming cells (GM-CFCs) in blood and trochanteric and femoral bone marrow in 233 individuals. Stem cell frequencies were determined with multiparameter flow cytometry and using an internal control to determine the intrinsic variance of the assays. Progenitor cell frequency was determined using a standard colony assay technique. The frequency of outliers from undetermined methodological causes was highest for blood, but less than 5% for all values. The frequency of CD45(hi)/CD133(+) cells correlated highly with the frequency of CD45(hi)/CD34(+) cells in trochanteric and femoral bone marrow. The frequency of these HSC populations in trochanteric and femoral bone marrow rose significantly with age. In contrast, there was no significant trend of either of these cell populations with age in the blood. Trochanteric marrow progenitor GM-CFCs showed no significant trends with age, but femoral marrow GM-CFCs trended downward with age, potentially because of the reported conversion of red marrow at this site to fat with age. Hematopoietic stem and progenitor cells exhibited changes in frequencies with age that differed between blood and bone marrow. We previously reported that side population (SP) multipotential HSC, which includes the precursors of CD45(hi)/CD133(+) and CD45(hi)/CD34(+), decline with age. Potentially the increases in stem cell frequencies in the intermediate compartment between SP and GM progenitor cells observed in this study represent a compensatory increase for the loss of more potent members of the HSC hierarchy.
Collapse
Affiliation(s)
- Tracy L Farrell
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Timothy R McGuire
- Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - Laura D Bilek
- School of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susan K Brusnahan
- Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - John D Jackson
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Judy T Lane
- Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kevin L Garvin
- Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Ann M Berger
- Adult Health and Illness, College of Nursing, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sonal R Tuljapurkar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - M Anne Kessinger
- Internal Medicine Oncology/Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - John Graham Sharp
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
3
|
Yasen M, Fei Q, Hutton WC, Zhang J, Dong J, Jiang X, Zhang F. Changes of number of cells expressing proliferation and progenitor cell markers with age in rabbit intervertebral discs. Acta Biochim Biophys Sin (Shanghai) 2013; 45:368-76. [PMID: 23449074 DOI: 10.1093/abbs/gmt019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Basic knowledge about the normal regeneration process within the intervertebral disc (IVD) is important to the understanding of the underlying biology. The presence of progenitor and stem cells in IVD has been verified. However, changes of number of progenitor and stem cells with age are still unknown. In this study, changes of cell proliferation and progenitor cell markers with age in IVD cells from rabbits of two different ages were investigated using flow cytometry, immunohistochemistry, real-time polymerase chain reaction, and western blot analysis. Proliferating cell nuclear antigen (PCNA) was chosen as a marker for proliferation, and Notch1, Jagged1, C-KIT, CD166 were chosen as stem/progenitor cell markers. Cell cycle analysis showed that cell number in the G2/M phase of the young rabbits was significantly higher than that of mature rabbits. Immunohistochemical staining demonstrated the expression of PCNA, C-KIT, CD166, Notch1, and Jagged1 in both young and mature annulus fibrosus (AF). Protein expressions of these cell markers in the young rabbits were all significantly higher than those in the mature rabbits. The expression levels of PCNA, CD166, C-KIT, Jagged1 were significantly higher in the AF, and PCNA, C-KIT in the nucleus pulposus from young rabbits than those from the mature rabbits. These findings demonstrated that both proliferation and progenitor cells exist in rabbit IVDs and the number of cells expressing proliferation and progenitor cell markers decreases with age in the rabbit IVD cells. Methods that are designed to maintain the endogenous progenitor cells and stimulate their proliferation could be successful in preventing or inhibiting degenerative disc disease.
Collapse
Affiliation(s)
- Miersalijiang Yasen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Safwani WKZW, Makpol S, Sathapan S, Chua KH. The impact of long-term in vitro expansion on the senescence-associated markers of human adipose-derived stem cells. Appl Biochem Biotechnol 2012; 166:2101-13. [PMID: 22391697 DOI: 10.1007/s12010-012-9637-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/22/2012] [Indexed: 01/21/2023]
Abstract
Human adipose-derived stem cells (ASCs) have generated a great deal of excitement in regenerative medicine. However, their safety and efficacy issue remain a major concern especially after long-term in vitro expansion. The aim of this study was to investigate the fundamental changes of ASCs in long-term culture by studying the morphological feature, growth kinetic, surface marker expressions, expression level of the senescence-associated genes, cell cycle distribution and ß-galactosidase activity. Human ASCs were harvested from lipoaspirate obtained from 6 patients. All the parameters mentioned above were measured at P5, P10, P15 and P20. Data were subjected to one-way analysis of variance with a Tukey post hoc test to determine significance difference (P < 0.05). The data showed that growth of ASCs reduced in long-term culture and the ß-galactosidase activity was significantly increased at later passage (P20). The morphology of ASCs in long-term culture showed the manifestation of senescent feature at P15 and P20. Significant alteration in the senescence-associated genes expression levels was observed in MMP1, p21, Rb and Cyclin D1 at P15 and P20. Significant increase in CD45 and HLA DR DQ DP surface marker was observed at P20. While cell cycle analysis showed significant decrease in percentage of ASCs at S and G2/M phase at later passage (P15). Our data showed ASCs cultured beyond P10 favours the senescence pathway and its clinical usage in cell-based therapy may be limited.
Collapse
|
5
|
Woolthuis CM, de Haan G, Huls G. Aging of hematopoietic stem cells: Intrinsic changes or micro-environmental effects? Curr Opin Immunol 2011; 23:512-7. [PMID: 21664115 DOI: 10.1016/j.coi.2011.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 01/06/2023]
Abstract
During development hematopoietic stem cells (HSCs) expand in number and persist throughout life by undergoing self-renewing divisions. Nevertheless, the hematopoietic system does not escape the negative effects of aging, suggesting that self-renewal is not complete. A fundamental issue in stem cell biology relates to such age-dependent loss of stem cell activity. Both stem cell intrinsic factors and extrinsic factors associated with an aging micro-environment could contribute to aging of the hematopoietic system. Recently, changes in the clonal composition of the HSC compartment during aging have been put forward as a key factor. Here, we discuss these recent developments and speculate how they may be of clinical relevance.
Collapse
Affiliation(s)
- Carolien M Woolthuis
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
6
|
Stiehl T, Marciniak-Czochra A. Characterization of stem cells using mathematical models of multistage cell lineages. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.mcm.2010.03.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Isaacson BM, Brunker LB, Brown AA, Beck JP, Burns GL, Bloebaum RD. An evaluation of electrical stimulation for improving periprosthetic attachment. J Biomed Mater Res B Appl Biomater 2011; 97:190-200. [DOI: 10.1002/jbm.b.31803] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/02/2010] [Accepted: 12/05/2010] [Indexed: 11/08/2022]
|
8
|
Brusnahan SK, McGuire TR, Jackson JD, Lane JT, Garvin KL, O'Kane BJ, Berger AM, Tuljapurkar SR, Kessinger MA, Sharp JG. Human blood and marrow side population stem cell and Stro-1 positive bone marrow stromal cell numbers decline with age, with an increase in quality of surviving stem cells: correlation with cytokines. Mech Ageing Dev 2010; 131:718-22. [PMID: 21035480 DOI: 10.1016/j.mad.2010.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 09/15/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
Abstract
Hematological deficiencies increase with aging leading to anemias, reduced hematopoietic stress responses and myelodysplasias. This study tested the hypothesis that side population hematopoietic stem cells (SP-HSC) would decrease with aging, correlating with IGF-1 and IL-6 levels and increases in bone marrow fat. Marrow was obtained from the femoral head and trochanteric region of the femur at surgery for total hip replacement (N=100). Whole trabecular marrow samples were ground in a sterile mortar and pestle and cellularity and fat content determined. Marrow and blood mononuclear cells were stained with Hoechst dye and the SP-HSC profiles acquired. Marrow stromal cells (MSC) were enumerated flow cytometrically employing the Stro-1 antibody, and clonally in the colony forming unit fibroblast (CFU-F) assay. Plasma levels of IGF-1 (ng/ml) and IL-6 (pg/ml) were measured by ELISA. SP-HSC in blood and bone marrow decreased with age but the quality of the surviving stem cells increased. MSC decreased non-significantly. IGF-1 levels (mean=30.7, SEM=2) decreased and IL-6 levels (mean=4.4, SEM=1) increased with age as did marrow fat (mean=1.2mmfat/g, SEM=0.04). There were no significant correlations between cytokine levels or fat and SP-HSC numbers. Stem cells appear to be progressively lost with aging and only the highest quality stem cells survive.
Collapse
Affiliation(s)
- S K Brusnahan
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-6395, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Isaacson BM, Bloebaum RD. Bone bioelectricity: What have we learned in the past 160 years? J Biomed Mater Res A 2010; 95:1270-9. [PMID: 20878899 DOI: 10.1002/jbm.a.32905] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 11/11/2022]
|
10
|
Isaacson BM, Stinstra JG, MacLeod RS, Pasquina PF, Bloebaum RD. Developing a quantitative measurement system for assessing heterotopic ossification and monitoring the bioelectric metrics from electrically induced osseointegration in the residual limb of service members. Ann Biomed Eng 2010; 38:2968-78. [PMID: 20458630 DOI: 10.1007/s10439-010-0050-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 04/19/2010] [Indexed: 11/25/2022]
Abstract
Poor prosthetic fit is often the result of heterotopic ossification (HO), a frequent problem following blast injuries for returning service members. Osseointegration technology offers an advantage for individuals with significant HO and poor socket tolerance by using direct skeletal attachment of a prosthesis to the distal residual limb, but remains limited due to prolonged post-operative rehabilitation regimens. Therefore, electrical stimulation has been proposed as a catalyst for expediting skeletal attachment and the bioelectric effects of HO were evaluated using finite element analysis in 11 servicemen with transfemoral amputations. Retrospective computed tomography (CT) scans provided accurate reconstructions, and volume conductor models demonstrated the variability in residual limb anatomy and necessity for patient-specific modeling to characterize electrical field variance if patients were to undergo a theoretical osseointegration of a prosthesis. In this investigation, the volume of HO was statistically significant when selecting the optimal potential difference for enhanced skeletal fixation, since higher HO volumes required increased voltages at the periprosthetic bone (p = 0.024, r = 0.670). Results from Spearman's rho correlations also indicated that the age of the subject and volume of HO were statistically significant and inversely proportional, in which younger service members had a higher frequency of HO (p = 0.041, r = -0.622). This study demonstrates that the volume of HO and age may affect the voltage threshold necessary to improve current osseointegration procedures.
Collapse
Affiliation(s)
- Brad M Isaacson
- Department of Veterans Affairs, Salt Lake City, UT 84148, USA
| | | | | | | | | |
Collapse
|
11
|
Risher JF, Todd GD, Meyer D, Zunker CL. The elderly as a sensitive population in environmental exposures: making the case. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 207:95-157. [PMID: 20652665 DOI: 10.1007/978-1-4419-6406-9_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The US population is aging. CDC has estimated that 20% of all Americans will be 65 or older by the year 2030. As a part of the aging process, the body gradually deteriorates and physiologic and metabolic limitations arise. Changes that occur in organ anatomy and function present challenges for dealing with environmental stressors of all kinds, ranging from temperature regulation to drug metabolism and excretion. The elderly are not just older adults, but rather are individuals with unique challenges and different medical needs than younger adults. The ability of the body to respond to physiological challenge presented by environmental chemicals is dependent upon the health of the organ systems that eliminate those substances from the body. Any compromise in the function of those organ systems may result in a decrease in the body's ability to protect itself from the adverse effects of xenobiotics. To investigate this issue, we performed an organ system-by-organ system review of the effects of human aging and the implications for such aging on susceptibility to drugs and xenobiotics. Birnbaum (1991) reported almost 20 years ago that it was clear that the pharmacokinetic behavior of environmental chemicals is, in many cases, altered during aging. Yet, to date, there is a paucity of data regarding recorded effects of environmental chemicals on elderly individuals. As a result, we have to rely on what is known about the effects of aging and the existing data regarding the metabolism, excretion, and adverse effects of prescription medications in that population to determine whether the elderly might be at greater risk when exposed to environmental substances. With increasing life expectancy, more and more people will confront the problems associated with advancing years. Moreover, although proper diet and exercise may lessen the immediate severity of some aspects of aging, the process will continue to gradually degrade the ability to cope with a variety of injuries and diseases. Thus, the adverse effects of long-term, low-level exposure to environmental substances will have a longer time to be manifested in a physiologically weakened elderly population. When such exposures are coupled with concurrent exposure to prescription medications, the effects could be devastating. Public health officials must be knowledgeable about the sensitivity of the growing elderly population, and ensure that the use of health guidance values (HGVs) for environmental contaminants and other substances give consideration to this physiologically compromised segment of the population.
Collapse
Affiliation(s)
- John F Risher
- Agency for Toxic Substances and Disease Registry, Division of Toxicology (F-32), Toxicology Information Branch, 1600 Clifton Road, Atlanta, GA 30333, USA.
| | | | | | | |
Collapse
|
12
|
Charruyer A, Barland CO, Yue L, Wessendorf HB, Lu Y, Lawrence HJ, Mancianti ML, Ghadially R. Transit-amplifying cell frequency and cell cycle kinetics are altered in aged epidermis. J Invest Dermatol 2009; 129:2574-83. [PMID: 19458632 DOI: 10.1038/jid.2009.127] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aged epidermis is less proliferative than young, as exemplified by slower wound healing. However, it is not known whether quantitative and/or qualitative alterations in the stem and/or transit-amplifying (TA) compartments are responsible for the decreased proliferation. Earlier studies found a normal or decreased frequency of putative epidermal stem cells (EpiSCs) with aging. We show, using long-term repopulation in vivo and colony formation in vitro, that, although no significant difference was detected in EpiSC frequency with aging, TA cell frequency is increased. Moreover, aged TA cells persist longer, whereas their younger counterparts have already differentiated. Underlying the alteration in TA cell kinetics in the aged is an increase in the proportion of cycling keratinocytes, as well as an increase in cell cycle duration. In summary, although no significant difference in EpiSC frequency was found, TA cell frequency was increased (as measured by in vivo repopulation, growth fraction, and colony formation). Furthermore, the proliferative capacity (cellular output) of individual aged EpiSCs and TA cells was decreased compared to that of young cells. Although longer cell cycle duration contributes to the decreased proliferative output from aged progenitors, the greater number of TA cells may be a compensatory mechanism tending to offset this deficit.
Collapse
Affiliation(s)
- Alexandra Charruyer
- Department of Dermatology, University of California, San Francisco, California 94121, USA
| | | | | | | | | | | | | | | |
Collapse
|