1
|
Parente M, Tonini C, Segatto M, Pallottini V. Regulation of cholesterol metabolism: New players for an old physiological process. J Cell Biochem 2023; 124:1449-1465. [PMID: 37796135 DOI: 10.1002/jcb.30477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Identified more than two centuries ago, cholesterol plays a pivotal role in human physiology. Since cholesterol metabolism is a physiologically significant process, it is not surprising that its alterations are associated with several pathologies. The discovery of new molecular targets or compounds able to modulate this sophisticated metabolism has been capturing the attention of research groups worldwide since many years. Endogenous and exogenous compounds are known to regulate cellular cholesterol synthesis and uptake, or reduce cholesterol absorption at the intestinal level, thereby regulating cholesterol homeostasis. However, there is a great need of new modulators and diverse new pathways have been uncovered. Here, after illustrating cholesterol metabolism and its well-known regulators, some new players of this important physiological process are also described.
Collapse
Affiliation(s)
| | | | - Marco Segatto
- Department of Bioscience and Territory, University of Molise, Pesche, Italy
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Rome, Italy
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Via del Fosso Fiorano, Rome, Italy
| |
Collapse
|
2
|
Calorie restriction changes lipidomic profiles and maintains mitochondrial function and redox balance during isoproterenol-induced cardiac hypertrophy. J Physiol Biochem 2022; 78:283-294. [PMID: 35023023 DOI: 10.1007/s13105-021-00863-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Typically, healthy cardiac tissue utilizes more fat than any other organ. Cardiac hypertrophy induces a metabolic shift leading to a preferential consumption of glucose over fatty acids to support the high energetic demand. Calorie restriction is a dietary procedure that induces health benefits and lifespan extension in many organisms. Given the beneficial effects of calorie restriction, we hypothesized that calorie restriction prevents cardiac hypertrophy, lipid content changes, mitochondrial and redox dysregulation. Strikingly, calorie restriction reversed isoproterenol-induced cardiac hypertrophy. Isolated mitochondria from hypertrophic hearts produced significantly higher levels of succinate-driven H2O2 production, which was blocked by calorie restriction. Cardiac hypertrophy lowered mitochondrial respiratory control ratios, and decreased superoxide dismutase and glutathione peroxidase levels. These effects were also prevented by calorie restriction. We performed lipidomic profiling to gain insights into how calorie restriction could interfere with the metabolic changes induced by cardiac hypertrophy. Calorie restriction protected against the consumption of several triglycerides (TGs) linked to unsaturated fatty acids. Also, this dietary procedure protected against the accumulation of TGs containing saturated fatty acids observed in hypertrophic samples. Cardiac hypertrophy induced an increase in ceramides, phosphoethanolamines, and acylcarnitines (12:0, 14:0, 16:0, and 18:0). These were all reversed by calorie restriction. Altogether, our data demonstrate that hypertrophy changes the cardiac lipidome, causes mitochondrial disturbances, and oxidative stress. These changes are prevented (at least partially) by calorie restriction intervention in vivo. This study uncovers the potential for calorie restriction to become a new therapeutic intervention against cardiac hypertrophy, and mechanisms in which it acts.
Collapse
|
3
|
Klionsky DJ, Bergamini E. Searching for the fountain of autophagy-dependent youth. Autophagy 2014; 8:1169-74. [DOI: 10.4161/auto.20788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
4
|
Smiljanic K, Vanmierlo T, Mladenovic Djordjevic A, Perovic M, Ivkovic S, Lütjohann D, Kanazir S. Cholesterol metabolism changes under long-term dietary restrictions while the cholesterol homeostasis remains unaffected in the cortex and hippocampus of aging rats. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9654. [PMID: 24756765 PMCID: PMC4082575 DOI: 10.1007/s11357-014-9654-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/05/2014] [Indexed: 06/03/2023]
Abstract
Maintaining cholesterol homeostasis in the brain is vital for its proper functioning. While it is well documented that dietary restriction modulates the metabolism of cholesterol peripherally, little is known as to how it can affect cholesterol metabolism in the brain. The present study was designed to elucidate the impact of long-term dietary restriction on brain cholesterol metabolism. Three-month-old male Wistar rats were exposed to long-term dietary restriction until 12 and 24 months of age. The concentrations of cholesterol, its precursors and metabolites, and food-derived phytosterols were measured in the serum, cortex, and hippocampus by gas chromatography/mass spectrometry. Relative changes in the levels of proteins involved in cholesterol synthesis, transport, and degradation were determined by Western blot analysis. Reduced food intake influenced the expression patterns of proteins implicated in cholesterol metabolism in the brain in a region-specific manner. Dietary restriction decreased the concentrations of cholesterol precursors, lanosterol in the cortex, and lanosterol and lathosterol in the hippocampus at 12 months, while the level of desmosterol was elevated in the hippocampus at 24 months. The concentrations of cholesterol and 24(S)-hydroxycholesterol remained unaffected. Food-derived phytosterols were significantly lower after dietary restriction in both the cortex and hippocampus at 12 and 24 months. These findings provide new insight into the effects of dietary restriction on cholesterol metabolism in the brain, lending further support to its neuroprotective effect.
Collapse
Affiliation(s)
- Kosara Smiljanic
- />Department of Neurobiology, Institute for Biological Research, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia
| | - Tim Vanmierlo
- />Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Aleksandra Mladenovic Djordjevic
- />Department of Neurobiology, Institute for Biological Research, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia
| | - Milka Perovic
- />Department of Neurobiology, Institute for Biological Research, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia
| | - Sanja Ivkovic
- />Department of Developmental Biology, Institute for Molecular Medicine, Lisbon, Portugal
| | - Dieter Lütjohann
- />Laboratory for Special Lipid Diagnostics, Institute of Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, Bonn, Germany
| | - Selma Kanazir
- />Department of Neurobiology, Institute for Biological Research, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
5
|
Trapani L, Segatto M, Pallottini V. New compounds able to control hepatic cholesterol metabolism: Is it possible to avoid statin treatment in aged people? World J Hepatol 2013; 5:676-684. [PMID: 24432184 PMCID: PMC3879689 DOI: 10.4254/wjh.v5.i12.676] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/16/2013] [Indexed: 02/06/2023] Open
Abstract
Aging is characterized by the loss of homeostasis that leads to changes in the biochemical composition of tissues, reduced ability to respond adaptively to environmental stimuli, and increased susceptibility and vulnerability to diseases including coronary artery diseases, carotid artery disease and brain vessel disease. Hypercholesterolemia is one of the primary risk factors for these pathologies, whose incidence is highly related to aging. Almost 25% of men and 42% of women older than 65 years have a serum total cholesterol level greater than 240 mg/dL. The mechanisms behind this age-related increase in plasma cholesterol are still incompletely understood, thus, the control of plasma cholesterol content in aged people is more challenging than in adults. In this review the different pharmacological approaches to reduce plasma cholesterol levels, particularly in aged people, will be discussed. In brief, current therapies are mostly based on the prescription of statins (3-hydroxy-3-methylglutaryl-CoA reductase inhibitors) that are pretty effective but that exert several side effects. More attention should be given to potential drug interactions, potential age-related changes in drug pharmacokinetics, adverse effects such as myopathy and competing risks when statins are prescribed to old patients. In combination or in alternative to statin therapy, other agents might be required to reduce low density lipoprotein (LDL) cholesterol levels. Among the available drugs, the most commonly prescribed are those addressed to reduce cholesterol absorption, to modulate lipoprotein lipase activity and bile acid sequestrants: even these pharmacological interventions are not exempt from side effects. The use of antioxidants or organoselenium compounds and the discovery of new proteins able to modulate exclusively LDL receptor recycling such as Proprotein convertase subtilisin kexin 9 and SEC24 offer new pharmacological approaches to selectively reduce the main causes of dyslipidemia.
Collapse
|
6
|
Gelsomino G, Corsetto PA, Campia I, Montorfano G, Kopecka J, Castella B, Gazzano E, Ghigo D, Rizzo AM, Riganti C. Omega 3 fatty acids chemosensitize multidrug resistant colon cancer cells by down-regulating cholesterol synthesis and altering detergent resistant membranes composition. Mol Cancer 2013; 12:137. [PMID: 24225025 PMCID: PMC4225767 DOI: 10.1186/1476-4598-12-137] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/11/2013] [Indexed: 01/17/2023] Open
Abstract
Background The activity of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two membrane transporters involved in multidrug resistance of colon cancer, is increased by high amounts of cholesterol in plasma membrane and detergent resistant membranes (DRMs). It has never been investigated whether omega 3 polyunsatured fatty acids (PUFAs), which modulate cholesterol homeostasis in dyslipidemic syndromes and have chemopreventive effects in colon cancer, may affect the response to chemotherapy in multidrug resistant (MDR) tumors. Methods We studied the effect of omega 3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in human chemosensitive colon cancer HT29 cells and in their MDR counterpart, HT29-dx cells. Results MDR cells, which overexpressed Pgp and MRP1, had a dysregulated cholesterol metabolism, due to the lower expression of ubiquitin E3 ligase Trc8: this produced lower ubiquitination rate of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCoAR), higher cholesterol synthesis, higher cholesterol content in MDR cells. We found that DHA and EPA re-activated Trc8 E3 ligase in MDR cells, restored the ubiquitination rate of HMGCoAR to levels comparable with chemosensitive cells, reduced the cholesterol synthesis and incorporation in DRMs. Omega 3 PUFAs were incorporated in whole lipids as well as in DRMs of MDR cells, and altered the lipid composition of these compartments. They reduced the amount of Pgp and MRP1 contained in DRMs, decreased the transporters activity, restored the antitumor effects of different chemotherapeutic drugs, restored a proper tumor-immune system recognition in response to chemotherapy in MDR cells. Conclusions Our work describes a new biochemical effect of omega 3 PUFAs, which can be useful to overcome chemoresistance in MDR colon cancer cells.
Collapse
Affiliation(s)
- Giada Gelsomino
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Boschetti E, Bacon JR, Meyer F, Tugnoli V, Bordoni A, Kroon PA. Comparison between single-cell cultures and tissue cultures as model systems for evaluating the modulation of gene expression by food bioactives. Int J Food Sci Nutr 2012; 64:194-201. [PMID: 23025340 DOI: 10.3109/09637486.2012.728200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, we sought the use of cultured human abdominal aortic aneurysm (AAA) tissue to investigate the transcriptional effects of some bioactives, whose role in the prevention of atherosclerotic plaque development through the regulation of gene expression has been hypothesized. After supplementation with n - 3 polyunsaturated fatty acids or epigallocatechin-3-gallate, the expression of five genes involved in cholesterol metabolism was assessed in cultures of AAA tissue obtained during elective open surgery, and compared to the results obtained in a single-cell culture model (HepG2 cells). All bioactives modulated gene expression in HepG2 cells, while no effects were observed in the tissue culture due to the shortcomings of the tissue model, which showed high within-patient variations and high between-patient variations in gene expression. Results herein reported underline that the choice of the model system is a critical point in the evaluation of the transcriptional effects of bioactives.
Collapse
Affiliation(s)
- Elisa Boschetti
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
| | | | | | | | | | | |
Collapse
|
8
|
Kowaltowski AJ. Caloric restriction and redox state: does this diet increase or decrease oxidant production? Redox Rep 2012; 16:237-41. [PMID: 22195991 DOI: 10.1179/1351000211y.0000000014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Calorie restriction (CR) is well established to enhance the lifespan of a wide variety of organisms, although the mechanisms are still being uncovered. Recently, some authors have suggested that CR acts through hormesis, enhancing the production of reactive oxygen species (ROS), activating stress response pathways, and increasing lifespan. Here, we review the literature on the effects of CR and redox state. We find that there is no evidence in rodent models of CR that an increase in ROS production occurs. Furthermore, results in Caenorhabditis elegans and Saccharomyces cerevisiae suggesting that CR increases intracellular ROS are questionable, and probably cannot be resolved until adequate, artifact free, tools for real-time, quantitative, and selective measurements of intracellular ROS are developed. Overall, the largest body of work indicates that CR improves redox state, although it seems improbable that a global improvement in redox state is the mechanism through which CR enhances lifespan.
Collapse
Affiliation(s)
- Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| |
Collapse
|
9
|
Plank M, Wuttke D, van Dam S, Clarke SA, de Magalhães JP. A meta-analysis of caloric restriction gene expression profiles to infer common signatures and regulatory mechanisms. MOLECULAR BIOSYSTEMS 2012; 8:1339-49. [PMID: 22327899 DOI: 10.1039/c2mb05255e] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Caloric restriction, a reduction in calorie intake without malnutrition, retards age-related degeneration and extends lifespan in several organisms. CR induces multiple changes, yet its underlying mechanisms remain poorly understood. In this work, we first performed a meta-analysis of microarray CR studies in mammals and identified genes and processes robustly altered due to CR. Our results reveal a complex array of CR-induced changes and we re-identified several genes and processes previously associated with CR, such as growth hormone signalling, lipid metabolism and immune response. Moreover, our results highlight novel associations with CR, such as retinol metabolism and copper ion detoxification, as well as hint of a strong effect of CR on circadian rhythms that in turn may contribute to metabolic changes. Analyses of our signatures by integrating co-expression data, information on genetic mutants, and transcription factor binding site analysis revealed candidate regulators of transcriptional modules in CR. Our results hint at a transcriptional module involved in sterol metabolism regulated by Srebf1. A putative regulatory role of Ppara was also identified. Overall, our conserved molecular signatures of CR provide a comprehensive picture of CR-induced changes and help understand its regulatory mechanisms.
Collapse
Affiliation(s)
- Michael Plank
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | | | | | | | | |
Collapse
|
10
|
Trapani L, Segatto M, Simeoni V, Balducci V, Dhawan A, Parmar VS, Prasad AK, Saso L, Incerpi S, Pallottini V. Short- and long-term regulation of 3-hydroxy 3-methylglutaryl coenzyme A reductase by a 4-methylcoumarin. Biochimie 2011; 93:1165-71. [PMID: 21530605 DOI: 10.1016/j.biochi.2011.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 04/11/2011] [Indexed: 12/16/2022]
Abstract
Dyslipidemia is one of the most significant risk factors for cardiovascular diseases. Cholesterol homeostasis is regulated by both the receptor-mediated endocytosis of Low Density Lipoproteins by LDL receptors and de novo cholesterol synthesis via the rate-limiting enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase. Although statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase substrate competitors, have revolutionized the management of cardiovascular diseases by lowering serum LDL, their side effects range from myalgia to rhabdomyolysis. Treatment with antioxidant compounds could represent an efficient alternative in the modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Indeed it has already been demonstrated that the rise in reactive oxygen species levels causes the complete dephosphorylation and, in turn activation of the enzyme. Many coumarins and their derivatives have the special ability to scavenge reactive oxygen species or show a lipid lowering potential. Here we evaluated whether the coumarin, 4-methylesculetin could exert both the ability to scavenge ROS and to modulate 3-hydroxy-3-methylglutaryl coenzyme A reductase in HepG2 cell line where the enzyme activity dysregulation induced by reactive oxygen species has already been reported. The antioxidant property of 4-methylesculetin led to the reduction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activation state through the increase of the enzyme phosphorylation. In addition, this coumarin showed the ability to modulate 3-hydroxy-3-methylglutaryl coenzyme A reductase protein levels both by transcriptional and degradational events independent of its antioxidant activity.
Collapse
Affiliation(s)
- Laura Trapani
- Department of Biology, University Roma Tre, Viale Marconi, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|