1
|
Nikjoo H, Rahmanian S, Taleei R. Modelling DNA damage-repair and beyond. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:1-18. [PMID: 38754703 DOI: 10.1016/j.pbiomolbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
The paper presents a review of mechanistic modelling studies of DNA damage and DNA repair, and consequences to follow in mammalian cell nucleus. We hypothesize DNA deletions are consequences of repair of double strand breaks leading to the modifications of genome that play crucial role in long term development of genetic inheritance and diseases. The aim of the paper is to review formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double strand breaks and deletions in damaged human genome from endogenous and exogenous events. The model of the cell nucleus presented enables simulation of DNA damage at molecular level identifying the spectrum of damage induced in all chromosomal territories and loops. Our mechanistic modelling of DNA repair for double stand breaks (DSB), single strand breaks (SSB) and base damage (BD), shows the complexity of DNA damage is responsible for the longer repair times and the reason for the biphasic feature of mammalian cells repair curves. In the absence of experimentally determined data, the mechanistic model of repair predicts the in vivo rate constants for the proteins involved in the repair of DSB, SSB, and of BD.
Collapse
Affiliation(s)
- Hooshang Nikjoo
- Department of Physiology, Anatomy and Genetics (DPAG), Oxford University, Oxford, OX1 3PT, UK.
| | | | - Reza Taleei
- Medical Physics Division, Department of Radiation Oncology Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
2
|
Stavgiannoudaki I, Goulielmaki E, Garinis GA. Broken strands, broken minds: Exploring the nexus of DNA damage and neurodegeneration. DNA Repair (Amst) 2024; 140:103699. [PMID: 38852477 DOI: 10.1016/j.dnarep.2024.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative disorders are primarily characterized by neuron loss progressively leading to cognitive decline and the manifestation of incurable and debilitating conditions, such as Alzheimer's, Parkinson's, and Huntington's diseases. Loss of genome maintenance causally contributes to age-related neurodegeneration, as exemplified by the premature appearance of neurodegenerative features in a growing family of human syndromes and mice harbouring inborn defects in DNA repair. Here, we discuss the relevance of persistent DNA damage, key DNA repair mechanisms and compromised genome integrity in age-related neurodegeneration highlighting the significance of investigating these connections to pave the way for the development of rationalized intervention strategies aimed at delaying the onset of neurodegenerative disorders and promoting healthy aging.
Collapse
Affiliation(s)
- Ioanna Stavgiannoudaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece.
| |
Collapse
|
3
|
Arvanitaki ES, Goulielmaki E, Gkirtzimanaki K, Niotis G, Tsakani E, Nenedaki E, Rouska I, Kefalogianni M, Xydias D, Kalafatakis I, Psilodimitrakopoulos S, Karagogeos D, Schumacher B, Stratakis E, Garinis GA. Microglia-derived extracellular vesicles trigger age-related neurodegeneration upon DNA damage. Proc Natl Acad Sci U S A 2024; 121:e2317402121. [PMID: 38635632 PMCID: PMC11047102 DOI: 10.1073/pnas.2317402121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
DNA damage and neurodegenerative disorders are intimately linked but the underlying mechanism remains elusive. Here, we show that persistent DNA lesions in tissue-resident macrophages carrying an XPF-ERCC1 DNA repair defect trigger neuroinflammation and neuronal cell death in mice. We find that microglia accumulate dsDNAs and chromatin fragments in the cytosol, which are sensed thereby stimulating a viral-like immune response in Er1Cx/- and naturally aged murine brain. Cytosolic DNAs are packaged into extracellular vesicles (EVs) that are released from microglia and discharge their dsDNA cargo into IFN-responsive neurons triggering cell death. To remove cytosolic dsDNAs and prevent inflammation, we developed targeting EVs to deliver recombinant DNase I to Er1Cx/- brain microglia in vivo. We show that EV-mediated elimination of cytosolic dsDNAs is sufficient to prevent neuroinflammation, reduce neuronal apoptosis, and delay the onset of neurodegenerative symptoms in Er1Cx/- mice. Together, our findings unveil a causal mechanism leading to neuroinflammation and provide a rationalized therapeutic strategy against age-related neurodegeneration.
Collapse
Affiliation(s)
- Ermioni S. Arvanitaki
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Katerina Gkirtzimanaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - George Niotis
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Edisona Tsakani
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Electra Nenedaki
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Iliana Rouska
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Mary Kefalogianni
- Department of Physics, University of Crete, HeraklionGR71003, Crete, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, HeraklionGR71110, Crete, Greece
| | - Dionysios Xydias
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, HeraklionGR71110, Crete, Greece
- Materials Science and Technology Department, University of Crete, HeraklionGR70013, Crete, Greece
| | - Ilias Kalafatakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
- Medical School, Division of Basic Sciences, University of Crete, HeraklionGR71003, Crete, Greece
| | - Sotiris Psilodimitrakopoulos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, HeraklionGR71110, Crete, Greece
| | - Domna Karagogeos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
- Medical School, Division of Basic Sciences, University of Crete, HeraklionGR71003, Crete, Greece
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne50931, Germany
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, HeraklionGR71110, Crete, Greece
| | - George A. Garinis
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| |
Collapse
|
4
|
Hu MZ, Dai ZZ, Ji HY, Zheng AQ, Liang H, Shen MM, Liu JN, Tang KF, Zhu SJ, Wang KJ. Upregulation of FAM50A promotes cancer development. Med Oncol 2023; 40:217. [PMID: 37393403 DOI: 10.1007/s12032-023-02072-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/24/2023] [Indexed: 07/03/2023]
Abstract
FAM50A encodes a nuclear protein involved in mRNA processing; however, its role in cancer development remains unclear. Herein, we conducted an integrative pan-cancer analysis using The Cancer Genome Atlas, Genotype-Tissue Expression, and the Clinical Proteomic Tumor Analysis Consortium databases. Based on the gene expression data from TCGA and GTEx databases, we compared FAM50A mRNA levels in 33 types of human cancer tissues to those in corresponding normal tissues and found that FAM50A mRNA level was upregulated in 20 of the 33 types of common cancer tissues. Then, we compared the DNA methylation status of the FAM50A promoter in tumor tissues to that in corresponding normal tissues. FAM50A upregulation was accompanied by promoter hypomethylation in 8 of the 20 types of tumor tissues, suggesting that promoter hypomethylation contributes to the upregulation of FAM50A in these cancer tissues. Elevated FAM50A expression in 10 types of cancer tissues was associated with poor prognosis in patients with cancer. FAM50A expression was positively correlated with CD4+ T-lymphocyte and dendritic cell infiltration in cancer tissues but was negatively correlated with CD8+ T-cell infiltration in cancer tissues. FAM50A knockdown caused DNA damage, induced interferon beta and interleukin-6 expression, and repressed the proliferation, invasion, and migration of cancer cells. Our findings indicate that FAM50A might be useful in cancer detection, reveal insights into its role in cancer development, and may contribute to the development of cancer diagnostics and treatments.
Collapse
Affiliation(s)
- Mei-Zhen Hu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhi-Zheng Dai
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hong-Yu Ji
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - An-Qi Zheng
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325015, People's Republic of China
| | - Hang Liang
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mei-Mei Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Choqing, 400016, People's Republic of China
| | - Jun-Nan Liu
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Kai-Fu Tang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shu-Juan Zhu
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Ke-Jian Wang
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
5
|
Arvanitaki ES, Stratigi K, Garinis GA. DNA damage, inflammation and aging: Insights from mice. FRONTIERS IN AGING 2022; 3:973781. [PMID: 36160606 PMCID: PMC9490123 DOI: 10.3389/fragi.2022.973781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
Persistent DNA lesions build up with aging triggering inflammation, the body’s first line of immune defense strategy against foreign pathogens and irritants. Once established, DNA damage-driven inflammation takes on a momentum of its own, due to the amplification and feedback loops of the immune system leading to cellular malfunction, tissue degenerative changes and metabolic complications. Here, we discuss the use of murine models with inborn defects in genome maintenance and the DNA damage response for understanding how irreparable DNA lesions are functionally linked to innate immune signaling highlighting their relevance for developing novel therapeutic strategies against the premature onset of aging-associated diseases.
Collapse
Affiliation(s)
- Ermioni S. Arvanitaki
- Department of Biology, University of Crete, Heraklion, Greece
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | | | - George A. Garinis
- Department of Biology, University of Crete, Heraklion, Greece
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
- *Correspondence: George A. Garinis,
| |
Collapse
|
6
|
Reactive Oxygen Species Bridge the Gap between Chronic Inflammation and Tumor Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2606928. [PMID: 35799889 PMCID: PMC9256443 DOI: 10.1155/2022/2606928] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
According to numerous animal studies, adverse environmental stimuli, including physical, chemical, and biological factors, can cause low-grade chronic inflammation and subsequent tumor development. Human epidemiological evidence has confirmed the close relationship between chronic inflammation and tumorigenesis. However, the mechanisms driving the development of persistent inflammation toward tumorigenesis remain unclear. In this study, we assess the potential role of reactive oxygen species (ROS) and associated mechanisms in modulating inflammation-induced tumorigenesis. Recent reports have emphasized the cross-talk between oxidative stress and inflammation in many pathological processes. Exposure to carcinogenic environmental hazards may lead to oxidative damage, which further stimulates the infiltration of various types of inflammatory cells. In turn, increased cytokine and chemokine release from inflammatory cells promotes ROS production in chronic lesions, even in the absence of hazardous stimuli. Moreover, ROS not only cause DNA damage but also participate in cell proliferation, differentiation, and apoptosis by modulating several transcription factors and signaling pathways. We summarize how changes in the redox state can trigger the development of chronic inflammatory lesions into tumors. Generally, cancer cells require an appropriate inflammatory microenvironment to support their growth, spread, and metastasis, and ROS may provide the necessary catalyst for inflammation-driven cancer. In conclusion, ROS bridge the gap between chronic inflammation and tumor development; therefore, targeting ROS and inflammation represents a new avenue for the prevention and treatment of cancer.
Collapse
|
7
|
Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res 2022; 71:817-831. [PMID: 35748903 PMCID: PMC9307547 DOI: 10.1007/s00011-022-01598-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/08/2023] Open
Abstract
Background Excessive exposure of the skin to UV radiation (UVR) triggers a remodeling of the immune system and leads to the photoaging state which is reminiscent of chronological aging. Over 30 years ago, it was observed that UVR induced an immunosuppressive state which inhibited skin contact hypersensitivity. Methods Original and review articles encompassing inflammation and immunosuppression in the photoaging and chronological aging processes were examined from major databases including PubMed, Scopus, and Google Scholar. Results Currently it is known that UVR treatment can trigger a cellular senescence and inflammatory state in the skin. Chronic low-grade inflammation stimulates a counteracting immunosuppression involving an expansion of immunosuppressive cells, e.g., regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and regulatory dendritic cells (DCreg). This increased immunosuppressive activity not only suppresses the function of effector immune cells, a state called immunosenescence, but it also induces bystander degeneration of neighboring cells. Interestingly, the chronological aging process also involves an accumulation of pro-inflammatory senescent cells and signs of chronic low-grade inflammation, called inflammaging. There is also clear evidence that inflammaging is associated with an increase in anti-inflammatory and immunosuppressive activities which promote immunosenescence. Conclusion It seems that photoaging and normal aging evoke similar processes driven by the remodeling of the immune system. However, it is likely that there are different molecular mechanisms inducing inflammation and immunosuppression in the accelerated photoaging and the chronological aging processes.
Collapse
|
8
|
Chatzidoukaki O, Stratigi K, Goulielmaki E, Niotis G, Akalestou-Clocher A, Gkirtzimanaki K, Zafeiropoulos A, Altmüller J, Topalis P, Garinis GA. R-loops trigger the release of cytoplasmic ssDNAs leading to chronic inflammation upon DNA damage. SCIENCE ADVANCES 2021; 7:eabj5769. [PMID: 34797720 PMCID: PMC8604417 DOI: 10.1126/sciadv.abj5769] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
How DNA damage leads to chronic inflammation and tissue degeneration with aging remains to be fully resolved. Here, we show that DNA damage leads to cellular senescence, fibrosis, loss-of-tissue architecture, and chronic pancreatitis in mice with an inborn defect in the excision repair cross complementation group 1 (Ercc1) gene. We find that DNA damage-driven R-loops causally contribute to the active release and buildup of single-stranded DNAs (ssDNAs) in the cytoplasm of cells triggering a viral-like immune response in progeroid and naturally aged pancreata. To reduce the proinflammatory load, we developed an extracellular vesicle (EV)-based strategy to deliver recombinant S1 or ribonuclease H nucleases in inflamed Ercc1−/− pancreatic cells. Treatment of Ercc1−/− animals with the EV-delivered nuclease cargo eliminates DNA damage-induced R-loops and cytoplasmic ssDNAs alleviating chronic inflammation. Thus, DNA damage-driven ssDNAs causally contribute to tissue degeneration, Ercc1−/− paving the way for novel rationalized intervention strategies against age-related chronic inflammation.
Collapse
Affiliation(s)
- Ourania Chatzidoukaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | - George Niotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Alexia Akalestou-Clocher
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Katerina Gkirtzimanaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | | | - Janine Altmüller
- Cologne Center for Genomics (CCG), Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | - George A. Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Corresponding author.
| |
Collapse
|
9
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
10
|
Siametis A, Niotis G, Garinis GA. DNA Damage and the Aging Epigenome. J Invest Dermatol 2021; 141:961-967. [PMID: 33494932 DOI: 10.1016/j.jid.2020.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/29/2022]
Abstract
In mammals, genome instability and aging are intimately linked as illustrated by the growing list of patients with progeroid and animal models with inborn DNA repair defects. Until recently, DNA damage was thought to drive aging by compromising transcription or DNA replication, thereby leading to age-related cellular malfunction and somatic mutations triggering cancer. However, recent evidence suggests that DNA lesions also elicit widespread epigenetic alterations that threaten cell homeostasis as a function of age. In this review, we discuss the functional links of persistent DNA damage with the epigenome in the context of aging and age-related diseases.
Collapse
Affiliation(s)
- Athanasios Siametis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece; Department of Biology, University of Crete, Heraklion, Greece
| | - George Niotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece; Department of Biology, University of Crete, Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece; Department of Biology, University of Crete, Heraklion, Greece.
| |
Collapse
|
11
|
Kasraian Z, Trompezinski S, Cario-André M, Morice-Picard F, Ged C, Jullie ML, Taieb A, Rezvani HR. Pigmentation abnormalities in nucleotide excision repair disorders: Evidence and hypotheses. Pigment Cell Melanoma Res 2018; 32:25-40. [PMID: 29938913 DOI: 10.1111/pcmr.12720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/11/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022]
Abstract
Skin pigmentation abnormalities are manifested in several disorders associated with deficient DNA repair mechanisms such as nucleotide excision repair (NER) and double-strand break (DSB) diseases, a topic that has not received much attention up to now. Hereditary disorders associated with defective DNA repair are valuable models for understanding mechanisms that lead to hypo- and hyperpigmentation. Owing to the UV-associated nature of abnormal pigmentary manifestations, the outcome of the activated DNA damage response (DDR) network could be the effector signal for alterations in pigmentation, ultimately manifesting as pigmentary abnormalities in repair-deficient disorders. In this review, the role of the DDR network in the manifestation of pigmentary abnormalities in NER and DSB disorders is discussed with a special emphasis on NER disorders.
Collapse
Affiliation(s)
- Zeinab Kasraian
- NAOS, Aix en Provence, France.,Univ. Bordeaux, Inserm, BMGIC, UMR 1035, Bordeaux, France
| | | | - Muriel Cario-André
- Univ. Bordeaux, Inserm, BMGIC, UMR 1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Fanny Morice-Picard
- Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France.,Service de Dermatologie Adulte et Pédiatrique, CHU de Bordeaux, Bordeaux, France
| | - Cécile Ged
- Univ. Bordeaux, Inserm, BMGIC, UMR 1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | | | - Alain Taieb
- Univ. Bordeaux, Inserm, BMGIC, UMR 1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France.,Service de Dermatologie Adulte et Pédiatrique, CHU de Bordeaux, Bordeaux, France
| | - Hamid Reza Rezvani
- Univ. Bordeaux, Inserm, BMGIC, UMR 1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
12
|
Zaki-Dizaji M, Akrami SM, Azizi G, Abolhassani H, Aghamohammadi A. Inflammation, a significant player of Ataxia-Telangiectasia pathogenesis? Inflamm Res 2018; 67:559-570. [PMID: 29582093 DOI: 10.1007/s00011-018-1142-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/03/2018] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Ataxia-Telangiectasia (A-T) syndrome is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, chromosome instability, radiosensitivity, and predisposition to malignancy. There is growing evidence that A-T patients suffer from pathologic inflammation that is responsible for many symptoms of this syndrome, including neurodegeneration, autoimmunity, cardiovascular disease, accelerated aging, and insulin resistance. In addition, epidemiological studies have shown A-T heterozygotes, somewhat like deficient patients, are susceptible to ionizing irradiation and have a higher risk of cancers and metabolic disorders. AREA COVERED This review summarizes clinical and molecular findings of inflammation in A-T syndrome. CONCLUSION Ataxia-Telangiectasia Mutated (ATM), a master regulator of the DNA damage response is the protein known to be associated with A-T and has a complex nuclear and cytoplasmic role. Loss of ATM function may induce immune deregulation and systemic inflammation.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.
| |
Collapse
|
13
|
Affiliation(s)
- George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, GR71409, Heraklion, Crete, Greece
| | - Bjoern Schwer
- Department of Neurological Surgery and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94158, United States
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.
| |
Collapse
|