1
|
Nadeem J, Sultana R, Parveen A, Kim SY. Recent Advances in Anti-Aging Therapeutic Strategies Targeting DNA Damage Response and Senescence-Associated Secretory Phenotype-Linked Signaling Cascade. Cell Biochem Funct 2025; 43:e70046. [PMID: 40008426 DOI: 10.1002/cbf.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025]
Abstract
Aging is considered the contributory accumulation of abruptions occurring through cell signaling cascades, which ultimately cause changes in physical functions, cell fate, and damage across all organ systems. DNA damage response (DDR) also occurs through telomere shortening, tumor formation, mitochondrial dysfunction, and so forth. Cellular aging occurs through cell cycle arrest, which is the result of extended DDR cascade signaling networks via MDC1, 53BP1, H2AX, ATM, ARF, P53, P13-Akt, BRAF, Sirtuins, NAD + , and so forth. These persistent cell cycle arrests initiated by DDR and other associated stress-induced signals promote a permanent state of cell cycle arrest called senescence-associated secretory phenotype (SASP). However, cellular aging gets accelerated with faulty DNA repair systems, and the produced senescent cells further generate various promoting contributors to age-related dysfunctional diseases including SASP. Any changes to these factors contribute to age-related disease development. Therefore, this review explores anti-aging factors targeting DDR and SASP regulation and their detailed signaling networks. In addition, it allows researchers to identify anti-aging targets and anti-aging therapeutic strategies based on identified and nonidentified targets.
Collapse
Affiliation(s)
- Jawad Nadeem
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| | - Razia Sultana
- Department of Pharmacy, Jagannath University, Dhaka, Bangladesh
| | - Amna Parveen
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| |
Collapse
|
2
|
He J, Fu Z, Zou B, Lei X, Lei L, Yang Q, Li G. Identification the Cellular Senescence Associated lncRNA LINC01579 in Gastric Cancer. J Cell Mol Med 2025; 29:e70360. [PMID: 39855898 PMCID: PMC11760997 DOI: 10.1111/jcmm.70360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Cellular senescence is a key promoter of tumorigenesis and malignant progression. This study aimed to develop a predictive model for assessing cellular senescence in gastric cancer (GC) outcomes. We identified senescence-related genes and lncRNAs from 375 stomach adenocarcinoma (STAD) patients and established a prognostic senescence score using multivariate Cox regression, validated in testing, TCGA-STAD and the combined TCGA-COAD and READ cohorts. The model's predictive efficacy was evaluated across clinical subgroups, tumour microenvironments and immune cell infiltration. A total of 116 senescence-related lncRNAs were filtered, and patients were clustered into two senescent subtypes. The lncRNA signature identified LINC01579 as an independent prognostic factor for GC. Low-risk groups showed prolonged overall survival, increased immune cell infiltration and reduced mutation load. Downregulation of LINC01579 using antisense oligonucleotides (ASOs) on normal human fibroblasts decreased cellular proliferation and migration in GC. Collectively, this study established and validated a promising prognostic model connecting senescence-related lncRNAs and clinical outcome in GC and provided potential senescence-related biomarkers for GC prognosis prediction.
Collapse
Affiliation(s)
- Jiayong He
- Department of General Surgery, Nanfang HospitalSouthern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouPeople's Republic of China
| | - Ziyi Fu
- Department of General Surgery, Nanfang HospitalSouthern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouPeople's Republic of China
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Boya Zou
- Department of General Surgery, Nanfang HospitalSouthern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouPeople's Republic of China
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhouPeople's Republic of China
- Department of DermatologySeoul National University College of MedicineSeoulRepublic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research InstituteSeoul National University HospitalSeoulRepublic of Korea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulRepublic of Korea
| | - Xuetao Lei
- Department of General Surgery, Nanfang HospitalSouthern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouPeople's Republic of China
| | - Linhan Lei
- Department of General Surgery, Nanfang HospitalSouthern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouPeople's Republic of China
| | - Qingbin Yang
- Department of General Surgery, Nanfang HospitalSouthern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouPeople's Republic of China
| | - Guoxin Li
- Department of General Surgery, Nanfang HospitalSouthern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouPeople's Republic of China
- Cancer Center of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine,Tsinghua MedicineTsinghua UniversityBeijingPeople's Republic of China
| |
Collapse
|
3
|
Lei SY, Qu Y, Yang YQ, Liu JC, Zhang YF, Zhou SY, He QY, Jin H, Yang Y, Guo ZN. Cellular senescence: A novel therapeutic target for central nervous system diseases. Biomed Pharmacother 2024; 179:117311. [PMID: 39182322 DOI: 10.1016/j.biopha.2024.117311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
The underlying mechanisms of diseases affecting the central nervous system (CNS) remain unclear, limiting the development of effective therapeutic strategies. Remarkably, cellular senescence, a biological phenomenon observed in cultured fibroblasts in vitro, is a crucial intrinsic mechanism that influences homeostasis of the brain microenvironment and contributes to the onset and progression of CNS diseases. Cellular senescence has been observed in disease models established in vitro and in vivo and in bodily fluids or tissue components from patients with CNS diseases. These findings highlight cellular senescence as a promising target for preventing and treating CNS diseases. Consequently, emerging novel therapies targeting senescent cells have exhibited promising therapeutic effects in preclinical and clinical studies on aging-related diseases. These innovative therapies can potentially delay brain cell loss and functional changes, improve the prognosis of CNS diseases, and provide alternative treatments for patients. In this study, we examined the relevant advancements in this field, particularly focusing on the targeting of senescent cells in the brain for the treatment of chronic neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis) and acute neurotraumatic insults (e.g., ischemic stroke, spinal cord injury, and traumatic brain injury).
Collapse
Affiliation(s)
- Shuang-Yin Lei
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yu-Qian Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Jia-Cheng Liu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yi-Fei Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Hang Jin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China; Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Lin L, Wusiman J, Zhang Z. Circular RNA circRNA_100349 functions as a miR-218-5p sponge for suppressing the cell proliferation of gastric cancer via regulation of IGF2 expression. Clinics (Sao Paulo) 2024; 79:100492. [PMID: 39293372 PMCID: PMC11422554 DOI: 10.1016/j.clinsp.2024.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/19/2024] [Accepted: 08/25/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) hold critical importance due to their notable function in developing Gastric Cancer (GC), which is a malignancy with the third most frequent occurrence worldwide. The aim of this study was to see if circRNA_0044516 would control GC cell proliferation and establish more effective therapeutic strategies. METHODS In GC tissues or cells, quantitative Real‑Time Polymerase Chain Reaction (qRT-PCR) was employed for the detection of the expression of circRNA_100349, Insulin-like Growth Factor II (IGF2), and miR-218-5p. CCK-8 assays were employed to gauge the proliferation of cells. A luciferase reporter was employed to establish the relationship of circRNA_100349 or IGF2 with miR-218-5p. RESULTS CircRNA_100349 was observed to undergo upregulation in GC cell lines along with tissues. GC cell proliferation was prevented by downregulating circRNA_100349. MiR-149 was targeted by CircRNA_100349, and its downregulation increased the amount of miR-218-5p in GC cells. Simultaneously silencing circRNA_100349 decreased IGF2 expression via miR-218-5p, and thus suppressed GC cell proliferation. Furthermore, in nude mice, circRNA_100349 knockdown prevented the tumor development of GC cells. CONCLUSIONS The findings furnished evidence of the critical involvement of circRNA_100349 in GC and that its downregulation impedes GC cell proliferation via the miR-218-5p/IGF2 axis.
Collapse
Affiliation(s)
- Linmei Lin
- Blood Transfusion Department, The First Hospital of Putian City, Putian, Fujian, China
| | - Jiamilan Wusiman
- Internal Medicine-Oncology, Guangzhou Royal Cancer Hospital, Guangzhou, Guangdong, China
| | - Zixu Zhang
- Department of Endoscope, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Huo S, Tang X, Chen W, Gan D, Guo H, Yao Q, Liao R, Huang T, Wu J, Yang J, Xiao G, Han X. Epigenetic regulations of cellular senescence in osteoporosis. Ageing Res Rev 2024; 99:102235. [PMID: 38367814 DOI: 10.1016/j.arr.2024.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Osteoporosis (OP) is a prevalent age-related disease that is characterized by a decrease in bone mineral density (BMD) and systemic bone microarchitectural disorders. With age, senescent cells accumulate and exhibit the senescence-associated secretory phenotype (SASP) in bone tissue, leading to the imbalance of bone homeostasis, osteopenia, changes in trabecular bone structure, and increased bone fragility. Cellular senescence in the bone microenvironment involves osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells (BMSCs), whose effects on bone homeostasis are regulated by epigenetics. Therefore, the epigenetic regulatory mechanisms of cellular senescence have received considerable attention as potential targets for preventing and treating osteoporosis. In this paper, we systematically review the mechanisms of aging-associated epigenetic regulation in osteoporosis, emphasizing the impact of epigenetics on cellular senescence, and summarize three current methods of targeting cellular senescence, which is helpful better to understand the pathogenic mechanisms of cellular senescence in osteoporosis and provides strategies for the development of epigenetic drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Shaochuan Huo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China
| | - Xinzheng Tang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China
| | - Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Donghao Gan
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hai Guo
- Liuzhou Traditional Chinese Medicine Hospital (Liuzhou Zhuang Medical Hospital), Liuzhou 545001, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rongdong Liao
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tingting Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Junxian Wu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China
| | - Junxing Yang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xia Han
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China.
| |
Collapse
|
6
|
He M, Pan Y, You C, Gao H. CircRNAs in cancer therapy tolerance. Clin Chim Acta 2024; 558:119684. [PMID: 38649011 DOI: 10.1016/j.cca.2024.119684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The rapidly expanding field of circular RNA (circ-RNA) research has opened new avenues in cancer diagnostics and treatment, highlighting the role of serum circRNAs as potential biomarkers for assessing tumor therapy resistance. This review comprehensively compiles existing knowledge regarding the biogenesis, function, and clinical relevance of circRNAs, emphasizing their stability, abundance, and cell type-specific expression profiles, which make them ideal candidates for noninvasive early biomarkers in cancer treatment. We explored the roles of circRNAs in oncogenesis and tumor progression and their complex interactions with patient responses to various cancer treatments, such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Through the analysis of data from recent studies and clinical trials, we underscore the prognostic significance of serum circRNAs in predicting therapeutic outcomes, their involvement in resistance mechanisms, and their capacity to inform personalized treatment approaches. Additionally, this review addresses the obstacles inherent in circRNA research, including the need for standardized protocols for circRNA extraction and quantification and the elucidation of the clinical significance of circRNAs. Furthermore, our investigation extends to future prospects, including embedding circRNA profiling into regular clinical workflows and pioneering circRNA-based therapeutic approaches. We underscore the transformative potential of serum circRNAs in enhancing cancer diagnosis, improving the accuracy of therapy tolerance predictions, and ultimately fostering the advent of precision oncology.
Collapse
Affiliation(s)
- Miao He
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, PR China
| | - Yunyan Pan
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China
| | - Chongge You
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China.
| | - Hongwei Gao
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China.
| |
Collapse
|
7
|
Ma Y, Li S, Ye S, Luo S, Wei L, Su Y, Zeng Y, Shi Y, Bian H, Xiao F. The role of miR-222-2p in exosomes secreted by hexavalent chromium-induced premature senescent hepatocytes as a SASP component. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123535. [PMID: 38365080 DOI: 10.1016/j.envpol.2024.123535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
With the development of world industrialization, the environmental pollution of hexavalent chromium [Cr(VI)] is becoming an increasingly serious problem. In particular, the mechanisms by which long-term and low-dose exposure to Cr(VI) leading the development of related cancers are not well understood. As senescent cells gradually lose their ability to proliferate and divide, they will not be malignantly transformed. However, Senescence-associated secretory phenotype (SASP) released by senescent cells into the cellular microenvironment can act on neighboring cells. Since SASP has a bidirectional regulatory role in the malignant transformation of cells. Hence, It is very necessary to identified the composition and function of SASP which secreted by Cr(VI) induced senescent L02 hepatocytes (S-L02). Exosomes, a vesicle-like substances released extracellularly after the fusion of intracellular multivesicular bodies with cell membrane, are important components of SASP and contain a large number of microRNAs (miRNAs). By establishing Cr(VI)-induced S-L02 model, we collected the exosomes from the supernatants of S-L02 and L02 culture medium respectively, and screened out the highly expressed miRNAs in the exosomes of S-L02, namely the new SASP components. Among them, the increase of miR-222-5p was the most significant. It was validated that as SASP, miR-222-5p can inhibit the proliferation of L02 and S-L02 hepatocytes and at the same time accelerate the proliferation and migration ability of HCC cells. Further mechanistic studies revealed that miR-222-5p attenuated the regulatory effect of protein phosphatase 2A subunit B isoform R2-α (PPP2R2A) on Akt via repressing its target gene PPP2R2A, causing reduced expressions of forkhead box O3 (FOXO3a), p27 and p21, and finally increasing the proliferation of HCC cells after diminishing the negative regulation of on cell cycle. This study certainly provides valuable laboratory evidence as well as potential therapeutic targets for the prevention and further personalized treatment of Cr(VI)-associated cancers.
Collapse
Affiliation(s)
- Yu Ma
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Siwen Li
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Shuzi Ye
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Sijia Luo
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Lai Wei
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Ying Su
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yuan Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yan Shi
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China
| | - Huanfeng Bian
- Shajing Sub-Center of Public Health Service, Bao'an District, 518125, Shenzhen, Guangdong, China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
8
|
Talepoor AG, Doroudchi M. Regulatory RNAs in immunosenescence. Immun Inflamm Dis 2024; 12:e1209. [PMID: 38456619 PMCID: PMC10921898 DOI: 10.1002/iid3.1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Immunosenescence is a multifactorial stress response to different intrinsic and extrinsic insults that cause immune deterioration and is accompanied by genomic or epigenomic perturbations. It is now widely recognized that genes and proteins contributing in the process of immunosenescence are regulated by various noncoding (nc) RNAs, including microRNAs (miRNAs), long ncRNAs, and circular RNAs. AIMS This review article aimed to evaluate the regulatore RNAs roles in the process of immunosenescence. METHODS We analyzed publications that were focusing on the different roles of regulatory RNAs on the several aspects of immunosenescence. RESULTS In the immunosenescence setting, ncRNAs have been found to play regulatory roles at both transcriptional and post-transcriptional levels. These factors cooperate to regulate the initiation of gene expression programs and sustaining the senescence phenotype and proinflammatory responses. CONCLUSION Immunosenescence is a complex process with pivotal alterations in immune function occurring with age. The extensive network that drive immunosenescence-related features are are mainly directed by a variety of regulatory RNAs such as miRNAs, lncRNAs, and circRNAs. Latest findings about regulation of senescence by ncRNAs in the innate and adaptive immune cells as well as their role in the immunosenescence pathways, provide a better understanding of regulatory RNAs function in the process of immunosenescence.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
- Autoimmune Diseases Research CenterUniversity of Medical SciencesShirazIran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
9
|
Shrestha SM, Fang X, Ye H, Ren L, Ji Q, Shi R. A novel upregulated hsa_circ_0032746 regulates the oncogenesis of esophageal squamous cell carcinoma by regulating miR-4270/MCM3 axis. Hum Genomics 2024; 18:3. [PMID: 38200573 PMCID: PMC10777493 DOI: 10.1186/s40246-023-00564-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Circular RNAs (CircRNA) have emerged as an interest of research in recent years due to its regulatory role in various kinds of cancers of human body. Esophageal squamous cell carcinoma (ESCC) is one of the major disease subtype in Asian countries, including China. CircRNAs are formed by back-splicing covalently joined 3'- and 5'- ends rather than canonical splicing and are found to have binding affinity with miRNAs that conjointly contribute to oncogenesis. MATERIALS AND METHODS 4 pairs of normal, cancer adjacent tissues and cancer tissues were analyzed by high-throughput RNA sequencing and 84 differentially upregulated circRNAs were detected in cancer tissues. hsa_circ_0032746 was silenced by siRNA and lentivirus and then further proliferation, migration and invasion were performed by CCK-8 and transwell assays. Bioinformatic analysis predicted binding affinity of circRNA/miRNA/mRNA axis. RESULTS After qPCR validation, we selected a novel upregulated hsa_circ_0032746 to explore its biogenetic functions which showed high expression in cancer tissues but not in cancer adjacent tissues. The clinicopathological relation of hsa_circ_0032746 showed positive correlation with the tumor location (P = 0.026) and gender (P = 0.05). We also predicted that hsa_circ_0032746 could sponge with microRNA. Bioinformatic analysis predicted 11 microRNA response element (MRE) sequences of hsa_circ_0032746 and dual luciferase reporter assay confirmed binding affinity with miR4270 evidencing further study of circRNA/miRNA role. The knockdown of hsa_circ_0032746 by siRNA and lentivirus demonstrated that proliferation, invasion and migration of ESCC were inhibited in vitro and vivo experiments. Bioinformatic analysis further predicted MCM3 as a target of miR-4270 and was found upregulated in ESCC upon validation. miR4270 mimic decreased the level of hsa_circ_0032746 and MCM3 while further rescue experiments demonstrated that hsa_circ_0032746 was dependent on miR4270/MCM3 axis on the development process of ESCC. CONCLUSION We revealed for the first time that circ_0032746/mir4270/MCM3 contributes in proliferation, migration and invasion of ESCC and could have potential prognostic and therapeutic significance.
Collapse
Affiliation(s)
- Sachin Mulmi Shrestha
- Department of Gastroenterology, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Xin Fang
- Department of Gastroenterology, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Hui Ye
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, China
| | - Lihua Ren
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, China
| | - Qinghua Ji
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, China
| | - Ruihua Shi
- Department of Gastroenterology, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China.
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
10
|
Shin YJ, Kwon KS, Suh Y, Lee KP. The role of non-coding RNAs in muscle aging: regulatory mechanisms and therapeutic potential. Front Mol Biosci 2024; 10:1308274. [PMID: 38264571 PMCID: PMC10803457 DOI: 10.3389/fmolb.2023.1308274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Muscle aging is a complex physiological process that leads to the progressive decline in muscle mass and function, contributing to debilitating conditions in the elderly such as sarcopenia. In recent years, non-coding RNAs (ncRNAs) have been increasingly recognized as major regulators of muscle aging and related cellular processes. Here, we comprehensively review the emerging role of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in the regulation of muscle aging. We also discuss how targeting these ncRNAs can be explored for the development of novel interventions to combat age-related muscle decline. The insights provided in this review offer a promising avenue for future research and therapeutic strategies aimed at improving muscle health during aging.
Collapse
Affiliation(s)
- Yeo Jin Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ki-Sun Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioscience, KRIBB School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- Aventi Inc., Daejeon, Republic of Korea
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, United States
- Department of Genetics and Development, Columbia University, New York, NY, United States
| | - Kwang-Pyo Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioscience, KRIBB School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
11
|
He X, Li N, Liu D, Zang M, Zhao M, Ran N, Liu C, Xing L, Wang H, Wang T, Shao Z. Regulatory role of ceRNA network in B lymphocytes of patients with immune thrombocytopenia. Autoimmunity 2023; 56:2281225. [PMID: 38053370 DOI: 10.1080/08916934.2023.2281225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE High-throughput sequencing was used to screen expressing differences of miRNA, lncRNA, and mRNA in CD19+ B peripheral blood samples of newly diagnosed immune thrombocytopenia (ITP) patients and healthy controls. The study aimed to explore the regulatory role of ceRNA network in the pathogenesis of dysfunctional CD19 + B lymphocytes of ITP patients. METHODS CD19+ B lymphocytes were isolated from peripheral blood samples of ITP patients and their healthy counterparts. High-throughput sequencing was used to screen for the expression of miRNA, lncRNA, and mRNA of ITP patients and healthy controls, which were analysed by the ceRNA network. Moreover, qPCR was used to verify the differential expression of miRNA, lncRNA, and mRNA in ITP patients and healthy controls. The correlation between differentially expressed miRNA, lncRNA, mRNA, and B lymphocyte subsets was also analysed. RESULTS The CD19+ B lymphocytes of 4 newly diagnosed ITP patients and 4 healthy controls were sequenced and analysed. There were 65 differentially expressed lncRNA and 149 mRNA forming a ceRNA network showed that 12 lncRNA and 136 differentially expressed mRNA were closely associated. Similarly, miR-144-3p, miR-374c-3p, and miR-451a were highly expressed in ITP patients, as confirmed by qPCR, which was consistent with the high-throughput sequence results. LOC102724852 and CCL20 were highly expressed in ITP patients, while LOC105378901, LOC112268311, ALAS2, and TBC1D3F were not as compared to healthy controls, which was consistent with the high-throughput sequence results. In addition, the expression of miR-374c-3p, LOC112268311, LOC105378901, and CXCL3 were correlated with the percentage of B lymphocyte subsets. CONCLUSIONS The ceRNA network of miRNA, lncRNA, and mRNA in peripheral CD19 + B lymphocytes plays an essential role in the pathogenesis of ITP.
Collapse
Affiliation(s)
- Xin He
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Nianbin Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Donglan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengtong Zang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Manjun Zhao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ningyuan Ran
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunyan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Limin Xing
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ting Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
12
|
Madè A, Bibi A, Garcia-Manteiga JM, Tascini AS, Piella SN, Tikhomirov R, Voellenkle C, Gaetano C, Leszek P, Castelvecchio S, Menicanti L, Martelli F, Greco S. circRNA-miRNA-mRNA Deregulated Network in Ischemic Heart Failure Patients. Cells 2023; 12:2578. [PMID: 37947656 PMCID: PMC10648415 DOI: 10.3390/cells12212578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Noncoding RNAs (ncRNAs), which include circular RNAs (circRNAs) and microRNAs (miRNAs), regulate the development of cardiovascular diseases (CVD). Notably, circRNAs can interact with miRNAs, influencing their specific mRNA targets' levels and shaping a competing endogenous RNAs (ceRNA) network. However, these interactions and their respective functions remain largely unexplored in ischemic heart failure (IHF). This study is aimed at identifying circRNA-centered ceRNA networks in non-end-stage IHF. Approximately 662 circRNA-miRNA-mRNA interactions were identified in the heart by combining state-of-the-art bioinformatics tools with experimental data. Importantly, KEGG terms of the enriched mRNA indicated CVD-related signaling pathways. A specific network centered on circBPTF was validated experimentally. The levels of let-7a-5p, miR-18a-3p, miR-146b-5p, and miR-196b-5p were enriched in circBPTF pull-down experiments, and circBPTF silencing inhibited the expression of HDAC9 and LRRC17, which are targets of miR-196b-5p. Furthermore, as suggested by the enriched pathway terms of the circBPTF ceRNA network, circBPTF inhibition elicited endothelial cell cycle arrest. circBPTF expression increased in endothelial cells exposed to hypoxia, and its upregulation was confirmed in cardiac samples of 36 end-stage IHF patients compared to healthy controls. In conclusion, circRNAs act as miRNA sponges, regulating the functions of multiple mRNA targets, thus providing a novel vision of HF pathogenesis and laying the theoretical foundation for further experimental studies.
Collapse
Affiliation(s)
- Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
- Department of Biosciences, University of Milan, 20122 Milan, Italy
| | - Jose Manuel Garcia-Manteiga
- Center for Omics Sciences COSR, BioInformatics Laboratory, San Raffaele Scientific Institute, 20132 Milan, Italy; (J.M.G.-M.); (A.S.T.)
| | - Anna Sofia Tascini
- Center for Omics Sciences COSR, BioInformatics Laboratory, San Raffaele Scientific Institute, 20132 Milan, Italy; (J.M.G.-M.); (A.S.T.)
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Santiago Nicolas Piella
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Roman Tikhomirov
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, National Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Serenella Castelvecchio
- Department of Adult Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.C.); (L.M.)
| | - Lorenzo Menicanti
- Department of Adult Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.C.); (L.M.)
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| |
Collapse
|
13
|
Gupta J, Ahmed AT, Tayyib NA, Zabibah RS, Shomurodov Q, Kadheim MN, Alsaikhan F, Ramaiah P, Chinnasamy L, Samarghandian S. A state-of-art of underlying molecular mechanisms and pharmacological interventions/nanotherapeutics for cisplatin resistance in gastric cancer. Biomed Pharmacother 2023; 166:115337. [PMID: 37659203 DOI: 10.1016/j.biopha.2023.115337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
The fourth common reason of death among patients is gastric cancer (GC) and it is a dominant tumor type in Ease Asia. One of the problems in GC therapy is chemoresistance. Cisplatin (CP) is a platinum compound that causes DNA damage in reducing tumor progression and viability of cancer cells. However, due to hyperactivation of drug efflux pumps, dysregulation of genes and interactions in tumor microenvironment, tumor cells can develop resistance to CP chemotherapy. The current review focuses on the CP resistance emergence in GC cells with emphasizing on molecular pathways, pharmacological compounds for reversing chemoresistance and the role of nanostructures. Changes in cell death mechanisms such as upregulation of pro-survival autophagy can prevent CP-mediated apoptosis that results in drug resistance. Moreover, increase in metastasis via EMT induction induces CP resistance. Dysregulation of molecular pathways such as PTEN, PI3K/Akt, Nrf2 and others result in changes in CP response of GC cells. Non-coding RNAs determine CP response of GC cells and application of pharmacological compounds with activity distinct of CP can result in sensitivity in tumor cells. Due to efficacy of exosomes in transferring bioactive molecules such as RNA and DNA molecules among GC cells, exosomes can also result in CP resistance. One of the newest progresses in overcoming CP resistance in GC is application of nanoplatforms for delivery of CP in GC therapy that they can increase accumulation of CP at tumor site and by suppressing carcinogenic factors and overcoming biological barriers, they increase CP toxicity on cancer cells.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Qakhramon Shomurodov
- Department of Maxillofacial Surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific Affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Mostafai N Kadheim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, the Islamic Republic of Iran.
| |
Collapse
|
14
|
Li R, Teng Y, Guo Y, Ren J, Li R, Luo H, Chen D, Feng Z, Fu Z, Zou X, Wang W, Zhou C. Aging-related decrease of histone methyltransferase SUV39H1 in adipose-derived stem cells enhanced SASP. Mech Ageing Dev 2023; 215:111868. [PMID: 37666472 DOI: 10.1016/j.mad.2023.111868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Aging-related diseases are closely associated with the state of inflammation, which is known as "inflammaging." Senescent cells are metabolically active, as exemplified by the secretion of inflammatory cytokines, chemokines, and growth factors, which is termed the senescence-associated secretory phenotype (SASP). Epigenetic regulation, especially the structural regulation of chromatin, is closely linked to the regulation of SASP. In our previous study, the suppressor of variegation 3-9 homolog 1 (SUV39H1) was elucidated to interact with Lhx8 and determine the cell fate of mesenchyme stem cells. However, the function of SUV39H1 during aging and the underlying mechanism of its epigenetic regulation remains controversial. Therefore, the C57BL/6 J CAG-Cre; SUV39H1fl/fl knockout mice and irradiation-induced cellular senescence model were built in this study to deepen the understanding of epigenetic regulation by SUV39H1 and its relation to SASP. In vivo and in vitro studies demonstrated that SUV39H1 decreased with aging and served as an inhibitor of SASP, especially IL-6, MCP-1, and Vcam-1, by altering H3K9me3 enrichment in their promoter region. These results provide new insights into the epigenetic regulation of SASP.
Collapse
Affiliation(s)
- Ruoyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yungshan Teng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yuqing Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Jianhan Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Haotian Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Danying Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zhicai Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zheng Fu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Weicai Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | - Chen Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| |
Collapse
|
15
|
Wang E, Li Y, Li H, Liu Y, Ming R, Wei J, Du P, Li X, Zong S, Xiao H. METTL3 Reduces Oxidative Stress-induced Apoptosis in Presbycusis by Regulating the N6-methyladenosine Level of SIRT1 mRNA. Neuroscience 2023; 521:110-122. [PMID: 37087022 DOI: 10.1016/j.neuroscience.2023.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 04/24/2023]
Abstract
N6-methyl adenosine (m6A) modification is known to play a crucial role in various aging-related diseases. However, its involvement in presbycusis, a type of age-related hearing loss, is not yet clear. We examined the changes in oxidative stress levels in both plasma of presbycusis patients and mice. To determine the expression of m6A and its functional enzymes, we used liquid chromatography tandem-mass spectrometry (LC-MS/MS), enzyme-linked immunosorbent assay (ELISA), and RT-PCR to analyze the total RNA of presbycusis patients blood cells (n = 8). Additionally, we detected the expression of m6A functional enzymes in the cochlea of presbycusis mice using immunohistochemistry. We assessed the effects of m6A methyltransferase METTL3 on SIRT1 protein expression, reactive oxygen species (ROS) levels, and apoptosis in an oxidative stress model of organ of Corti 1 (OC1) cells. To observe the effect on SIRT1 protein expression, we interfered with the m6A recognition protein IGF2BP3 using siRNA. In both presbycusis patients and mice, there was an increased level of oxidative stress in plasma.There was a decrease in the expression of m6A, METTL3, and IGF2BP3 in presbycusis patients blood cells. The expression of METTL3 and IGF2BP3 was also reduced in the cochlea of presbycusis mice. In OC1 cells, METTL3 positively regulated SIRT1 protein levels, while reversely regulated the level of ROS and apoptosis. IGF2BP3 was found to be involved in the regulation of SIRT1 protein expression. In addition, METTL3 may play a protective role in oxidative stress-induced injury of OC1 cells, while both METTL3 and IGF2BP3 cooperatively regulate the level of m6A and the fate of SIRT1 mRNA in OC1 cells.
Collapse
Affiliation(s)
- Enhao Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Hejie Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingzhao Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruijie Ming
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Wei
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyu Du
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangrui Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Aging Hallmarks and the Role of Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030651. [PMID: 36978899 PMCID: PMC10044767 DOI: 10.3390/antiox12030651] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Aging is a complex biological process accompanied by a progressive decline in the physical function of the organism and an increased risk of age-related chronic diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. Studies have established that there exist nine hallmarks of the aging process, including (i) telomere shortening, (ii) genomic instability, (iii) epigenetic modifications, (iv) mitochondrial dysfunction, (v) loss of proteostasis, (vi) dysregulated nutrient sensing, (vii) stem cell exhaustion, (viii) cellular senescence, and (ix) altered cellular communication. All these alterations have been linked to sustained systemic inflammation, and these mechanisms contribute to the aging process in timing not clearly determined yet. Nevertheless, mitochondrial dysfunction is one of the most important mechanisms contributing to the aging process. Mitochondria is the primary endogenous source of reactive oxygen species (ROS). During the aging process, there is a decline in ATP production and elevated ROS production together with a decline in the antioxidant defense. Elevated ROS levels can cause oxidative stress and severe damage to the cell, organelle membranes, DNA, lipids, and proteins. This damage contributes to the aging phenotype. In this review, we summarize recent advances in the mechanisms of aging with an emphasis on mitochondrial dysfunction and ROS production.
Collapse
|
17
|
Zhang L, Xia J. N6-Methyladenosine Methylation of mRNA in Cell Senescence. Cell Mol Neurobiol 2023; 43:27-36. [PMID: 34767142 PMCID: PMC11415202 DOI: 10.1007/s10571-021-01168-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/03/2021] [Indexed: 01/07/2023]
Abstract
Cell senescence is the growth arrest caused by the accumulation of irreparable cell damage, which is involved in physiological and pathological processes and regulated by the post-transcriptional level. This regulation is performed by transcriptional regulators and driven by aging-related small RNAs, long non-coding RNAs, and RNA-binding proteins. N6-methyladenosine (m6A) is the most common chemical modification in eukaryotic mRNA, which can enhance or reduce the binding of transcriptional regulators. Increasing studies have confirmed the crucial role of m6A in controlling mRNA in various physiological processes. Remarkably, recent reports have indicated that abnormal methylation of m6A-related RNA may affect cell senescence. In this review, we clarified the association between m6A modification and cell senescence and analyzed the limitations of the current research.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Supra R, Agrawal DK. Mechanobiology of MicroRNAs in Intervertebral Disk Degeneration. JOURNAL OF SPINE RESEARCH AND SURGERY 2023; 5:1-9. [PMID: 36777190 PMCID: PMC9912327 DOI: 10.26502/fjsrs0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Intervertebral disk degeneration (IDD) is an intricate pathological process contributing to one of the major causes of low back pain. The degradation of the extracellular matrix (ECM), inflammation, and apoptosis have all been investigated as critical factors involved in the pathology of degenerative disk disease. Additionally, the presence of aberrant microRNAs (miRNAs), conserved molecules that regulate the amount protein post-transcriptionally, may play a crucial role in the pathogenesis of IDD. Research regarding the dysfunction of miRNAs in IDD has been well researched over the past five years. Here, we provide a critical overview of the current knowledge of miRNAs, emphasizing the processes involved in the degenerative disk pathology.
Collapse
Affiliation(s)
- Rajiv Supra
- College of Osteopathic Medicine, Touro University, Henderson, Nevada
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Pomona, California
| |
Collapse
|
19
|
Sarkar S, Chowdhury SG, Karmakar P. Drugging non-coding RNAs-A new light of hope in senescence-related cancer therapy. Chem Biol Drug Des 2022; 101:1216-1228. [PMID: 36573649 DOI: 10.1111/cbdd.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022]
Abstract
Cancer is the most prevalent disease of concern worldwide for several decades. Diverse therapeutic aspects are in applications to control this phenomenal disease and also for decennaries. Among many causes and consequences of cancer, senescence has gained much interest in recent times. Senescence, also termed aging, is the natural process that induces cancer in neighboring cells through Senescence-Associated-Secretory Phenotypes (SASPs) production. As a cure or preventive measure of cancer progression, studies already light upon multiple proteins and their roles in associated pathways but the aspect of different non-coding RNAs (ncRNAs) is emerging recently and is under extensive research. Different approaches toward controlling senescence and inhibiting senescent cell accumulation are other aspects of cancer procurement. Thus, the role of ncRNA molecules in senescence and aging is getting much more interest as an alternate therapy for cancer treatment. In this review, at first, the roles of different ncRNAs related to several cellular processes are described. Then we tried to highlight the roles of different non-coding RNAs in senescence-induced cancer formation that extends with increasing age and emphasized non-coding RNAs as a therapeutic target solely or in combination with small molecules where drugging of small molecules targeting these non-coding RNAs can control cancer development.
Collapse
Affiliation(s)
- Swarupa Sarkar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | | | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
20
|
Liu Y, Zhang Z, Li T, Xu H, Zhang H. Senescence in osteoarthritis: from mechanism to potential treatment. Arthritis Res Ther 2022; 24:174. [PMID: 35869508 PMCID: PMC9306208 DOI: 10.1186/s13075-022-02859-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is an age-related cartilage degenerative disease, and chondrocyte senescence has been extensively studied in recent years. Increased numbers of senescent chondrocytes are found in OA cartilage. Selective clearance of senescent chondrocytes in a post-traumatic osteoarthritis (PTOA) mouse model ameliorated OA development, while intraarticular injection of senescent cells induced mouse OA. However, the means and extent to which senescence affects OA remain unclear. Here, we review the latent mechanism of senescence in OA and propose potential therapeutic methods to target OA-related senescence, with an emphasis on immunotherapies. Natural killer (NK) cells participate in the elimination of senescent cells in multiple organs. A relatively comprehensive discussion is presented in that section. Risk factors for OA are ageing, obesity, metabolic disorders and mechanical overload. Determining the relationship between known risk factors and senescence will help elucidate OA pathogenesis and identify optimal treatments.
Collapse
|
21
|
Junaid M, Lee A, Kim J, Park TJ, Lim SB. Transcriptional Heterogeneity of Cellular Senescence in Cancer. Mol Cells 2022; 45:610-619. [PMID: 35983702 PMCID: PMC9448649 DOI: 10.14348/molcells.2022.0036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 11/27/2022] Open
Abstract
Cellular senescence plays a paradoxical role in tumorigenesis through the expression of diverse senescence-associated (SA) secretory phenotypes (SASPs). The heterogeneity of SA gene expression in cancer cells not only promotes cancer stemness but also protects these cells from chemotherapy. Despite the potential correlation between cancer and SA biomarkers, many transcriptional changes across distinct cell populations remain largely unknown. During the past decade, single-cell RNA sequencing (scRNA-seq) technologies have emerged as powerful experimental and analytical tools to dissect such diverse senescence-derived transcriptional changes. Here, we review the recent sequencing efforts that successfully characterized scRNA-seq data obtained from diverse cancer cells and elucidated the role of senescent cells in tumor malignancy. We further highlight the functional implications of SA genes expressed specifically in cancer and stromal cell populations in the tumor microenvironment. Translational research leveraging scRNA-seq profiling of SA genes will facilitate the identification of novel expression patterns underlying cancer susceptibility, providing new therapeutic opportunities in the era of precision medicine.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School, Suwon 16499, Korea
| | - Aejin Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Jaehyung Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Tae Jun Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School, Suwon 16499, Korea
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School, Suwon 16499, Korea
| |
Collapse
|
22
|
Lee WJ, Ji H, Jeong SD, Pandey PR, Gorospe M, Kim HH. LINC00162 regulates cell proliferation and apoptosis by sponging PAQR4-targeting miR-485-5p. J Cell Physiol 2022; 237:2943-2960. [PMID: 35491694 PMCID: PMC9846112 DOI: 10.1002/jcp.30758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 01/21/2023]
Abstract
Growing evidence indicates that long intergenic noncoding RNAs play an important role in cancer progression by affecting gene regulation at the transcriptional and posttranscriptional levels. Recent studies have shown that long intergenic noncoding RNA functions as a competitive endogenous RNA, which can interact with and mitigate the function of microRNA. In this study, we investigated the molecular mechanism by which LINC00162 regulates cell proliferation and apoptotic cell death. By analyzing RNA sequencing data, LINC00162 was identified to be a target of heterogeneous nuclear ribonucleoprotein K (hnRNPK). HnRNPK positively regulated LINC00162 expression through p38 mitogen-activated protein kinase. Lowering the level of either hnRNPK or LINC00162 decreased proliferation and colony formation while it increased apoptotic cell death. Small RNA sequencing followed by the antisense oligonucleotide pulldown, revealed that LINC00162 interacts directly with miR-485-5p which exhibited tumor-suppressing effects by suppressing cell proliferation and colony formation, and increasing apoptotic cell death. Through the bioinformatic approaches, progestin and adipoQ receptor 4 (PAQR4) was selected as a common target of LINC00162 and miR-485-5p. miR-485-5p decreased the expression of PAQR4 by directly binding to the 3'-untranslated region of PAQR4 messenger RNA. Knockdown of hnRNPK and LINC00162 increased the level of functional miR-485-5p, indicating that LINC00162 may compete for miR-485-5p, thereby derepressing PAQR4 expression. Overexpression of either hnRNPK or LINC00162, or inhibition of miR-485-5p, protected cells against etoposide-induced apoptotic death. Our findings demonstrate that a regulatory paradigm implicating hnRNPK, LINC00162, miR-485-5p, and PAQR4 plays an important role in cell proliferation and apoptosis, and is a promising target for cancer therapeutics.
Collapse
Affiliation(s)
- Woo Joo Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Haein Ji
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Seong Dong Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea,Department of Biopharmaceutical Convergence, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea,Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea,Correspondence: Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea. Phone: +82-2-3410-1039; Fax: +82-2-3410-0534;
| |
Collapse
|
23
|
Han X, Lei Q, Xie J, Liu H, Sun H, Jing L, Zhang X, Zhang T, Gou X. Potential regulators of the senescence-associated secretory phenotype during senescence and ageing. J Gerontol A Biol Sci Med Sci 2022; 77:2207-2218. [PMID: 35524726 DOI: 10.1093/gerona/glac097] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Indexed: 11/14/2022] Open
Abstract
Senescent cells express and secrete a variety of extracellular modulators that include cytokines, chemokines, proteases, growth factors and some enzymes associated with ECM remodeling, defined as the senescence-associated secretory phenotype (SASP). SASP reinforces senescent cell cycle arrest, stimulates and recruits immune cells for immune-mediated clearance of potentially tumorigenic cells, limits or induces fibrosis and promotes wound healing and tissue regeneration. On the other hand, SASP mediates chronic inflammation leading to destruction of tissue structure and function and stimulating the growth and survival of tumour cells. SASP is highly heterogeneous and the role of SASP depends on the context. The regulation of SASP occurs at multiple levels including chromatin remodelling, transcription, mRNA translation, intracellular trafficking and secretion. Several SASP modulators have already been identified setting the stage for future research on their clinical applications. In this review, we summarize in detail the potential signalling pathways that trigger and regulate SASP production during ageing and senescence.
Collapse
Affiliation(s)
- Xiaojuan Han
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Qing Lei
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Jiamei Xie
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Huanhuan Liu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Haoran Sun
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Li Jing
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xiaohua Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Tianying Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
24
|
Wang H, Tang Z, Duan J, Zhou C, Xu K, Mu H. Cancer-released exosomal circular RNA circ_0008717 promotes cell tumorigenicity through microRNA-1287-5p/P21-activated kinase 2 (PAK2) axis in non-small cell lung cancer. Bioengineered 2022; 13:8937-8949. [PMID: 35333693 PMCID: PMC9161925 DOI: 10.1080/21655979.2022.2056822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Circular RNA (circRNA) circ_0008717 has been revealed to promote cell carcinogenesis in non-small cell lung cancer (NSCLC). Exosomal circRNA packaged into exosomes has been defined as a potential diagnostic and therapeutic biomarker of cancers. However, little attention is focused on the role of circRNAs within exosomes in NSCLC. Exosomes were isolated by ultracentrifugation method and qualified by nanoparticle tracking analysis and Western blot. Levels of circ_0008717, microRNA (miR)-1287-5p, and P21-activated kinase 2 (PAK2) were detected using qRT-PCR and western blot. The interaction between miR-1287-5p and circ_0008717 or PAK2 was investigated. The phenotypes of NSCLC cells with circ_0008717 downregulation were tested. Circ_0008717 was highly expressed in NSCLC. Functionally, circ_0008717 deficiency suppressed cell malignant phenotypes in NSCLC in vitro and in nude mice. Circ_0008717 sponged miR-1287-5p to elevate PAK2, a downstream target of miR-1287-5p. Silencing of miR-1287-5p blocked the antitumor effects of circ_0008717 knockdown in NSCLC cells. Besides, miR-1287-5p repressed cell oncogenic behaviors in NSCLC by targeting PAK2. Besides that, we confirmed that circ_0008717 was incorporated into exosomes in NSCLC cells. Circ_0008717 knockdown inhibited NSCLC tumorigenesis via miR-1287-5p/PAK2 axis, and the extracellular circulating circ_0008717 was transferred through incorporation in exosomes.
Collapse
Affiliation(s)
- Huimin Wang
- Department of Clinical Laboratory, Tianjin First Center Hospital, Tianjin, Hebei, China
| | - Zhiqin Tang
- Department of Clinical Laboratory, Tianjin First Center Hospital, Tianjin, Hebei, China
| | - Jihui Duan
- Department of Clinical Laboratory, Tianjin First Center Hospital, Tianjin, Hebei, China
| | - Chunlei Zhou
- Department of Clinical Laboratory, Tianjin First Center Hospital, Tianjin, Hebei, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, Hebei, China
| | - Hong Mu
- Department of Clinical Laboratory, Tianjin First Center Hospital, Tianjin, Hebei, China
| |
Collapse
|
25
|
Ni YQ, Xu H, Liu YS. Roles of Long Non-coding RNAs in the Development of Aging-Related Neurodegenerative Diseases. Front Mol Neurosci 2022; 15:844193. [PMID: 35359573 PMCID: PMC8964039 DOI: 10.3389/fnmol.2022.844193] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Aging-related neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are gradually becoming the primary burden of society and cause significant health-care concerns. Aging is a critical independent risk factor for neurodegenerative diseases. The pathological alterations of neurodegenerative diseases are tightly associated with mitochondrial dysfunction, inflammation, and oxidative stress, which in turn stimulates the further progression of neurodegenerative diseases. Given the potential research value, lncRNAs have attracted considerable attention. LncRNAs play complex and dynamic roles in multiple signal transduction axis of neurodegeneration. Emerging evidence indicates that lncRNAs exert crucial regulatory effects in the initiation and development of aging-related neurodegenerative diseases. This review compiles the underlying pathological mechanisms of aging and related neurodegenerative diseases. Besides, we discuss the roles of lncRNAs in aging. In addition, the crosstalk and network of lncRNAs in neurodegenerative diseases are also explored.
Collapse
Affiliation(s)
- Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
- *Correspondence: You-Shuo Liu,
| |
Collapse
|
26
|
Abstract
With the development of precision medicine, the efficiency of tumor treatment has been significantly improved. More attention has been paid to targeted therapy and immunotherapy as the key to precision treatment of cancer. Targeting epidermal growth factor receptor (EGFR) has become one of the most important targeted treatments for various cancers. Comparing with traditional chemotherapy drugs, targeting EGFR is highly selective in killing tumor cells with better safety, tolerability and less side effect. In addition, tumor immunotherapy has become the fourth largest tumor therapy after surgery, radiotherapy and chemotherapy, especially immune checkpoint inhibitors. However, these treatments still produce a certain degree of drug resistance. Non-coding RNAs (ncRNAs) were found to play a key role in carcinogenesis, treatment and regulation of the efficacy of anticancer drugs in the past few years. Therefore, in this review, we aim to summarize the targeted treatment of cancers and the functions of ncRNAs in cancer treatment.
Collapse
|
27
|
MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Redox Control of Cell Senescence. Antioxidants (Basel) 2022; 11:antiox11030480. [PMID: 35326131 PMCID: PMC8944605 DOI: 10.3390/antiox11030480] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Cell senescence is critical in diverse aspects of organism life. It is involved in tissue development and homeostasis, as well as in tumor suppression. Consequently, it is tightly integrated with basic physiological processes during life. On the other hand, senescence is gradually being considered as a major contributor of organismal aging and age-related diseases. Increased oxidative stress is one of the main risk factors for cellular damages, and thus a driver of senescence. In fact, there is an intimate link between cell senescence and response to different types of cellular stress. Oxidative stress occurs when the production of reactive oxygen species/reactive nitrogen species (ROS/RNS) is not adequately detoxified by the antioxidant defense systems. Non-coding RNAs are endogenous transcripts that govern gene regulatory networks, thus impacting both physiological and pathological events. Among these molecules, microRNAs, long non-coding RNAs, and more recently circular RNAs are considered crucial mediators of almost all cellular processes, including those implicated in oxidative stress responses. Here, we will describe recent data on the link between ROS/RNS-induced senescence and the current knowledge on the role of non-coding RNAs in the senescence program.
Collapse
|
28
|
Wen S, Li C, Zhan X. Muti-omics integration analysis revealed molecular network alterations in human nonfunctional pituitary neuroendocrine tumors in the framework of 3P medicine. EPMA J 2022; 13:9-37. [PMID: 35273657 PMCID: PMC8897533 DOI: 10.1007/s13167-022-00274-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Nonfuctional pituitary neuroendocrine tumor (NF-PitNET) is highly heterogeneous and generally considered a common intracranial tumor. A series of molecules are involved in NF-PitNET pathogenesis that alter in multiple levels of genome, transcriptome, proteome, and metabolome, and those molecules mutually interact to form dynamically associated molecular-network systems. This article reviewed signaling pathway alterations in NF-PitNET based on the analyses of the genome, transcriptome, proteome, and metabolome, and emphasized signaling pathway network alterations based on the integrative omics, including calcium signaling pathway, cGMP-PKG signaling pathway, mTOR signaling pathway, PI3K/AKT signaling pathway, MAPK (mitogen-activated protein kinase) signaling pathway, oxidative stress response, mitochondrial dysfunction, and cell cycle dysregulation, and those signaling pathway networks are important for NF-PitNET formation and progression. Especially, this review article emphasized the altered signaling pathways and their key molecules related to NF-PitNET invasiveness and aggressiveness that are challenging clinical problems. Furthermore, the currently used medication and potential therapeutic agents that target these important signaling pathway networks are also summarized. These signaling pathway network changes offer important resources for insights into molecular mechanisms, discovery of effective biomarkers, and therapeutic targets for patient stratification, predictive diagnosis, prognostic assessment, and targeted therapy of NF-PitNET.
Collapse
Affiliation(s)
- Siqi Wen
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China ,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China ,Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Chunling Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China ,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China ,Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People’s Republic of China
| |
Collapse
|
29
|
STAT1-Induced Upregulation lncRNA LINC00958 Accelerates the Epithelial Ovarian Cancer Tumorigenesis by Regulating Wnt/ β-Catenin Signaling. DISEASE MARKERS 2021; 2021:1405045. [PMID: 34790276 PMCID: PMC8592733 DOI: 10.1155/2021/1405045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
Background Growing studies have demonstrated that long noncoding RNAs (lncRNAs) play important roles in tumor progression. In this study, we aimed to explore the potential roles of lncRNA LINC00958 (LINC00958) and its biological functions in epithelial ovarian cancer (EOC). Methods The expression of LINC00958 in 11 cases of EOC and adjacent nontumor specimens and five cell lines was detected by qRT-PCR. CCK-8, colony formation, and flow cytometry assays were conducted to study the cell viabilities of EOC cells. Wound scratch and transwell analyses were carried out for the examination of cell invasion and migration of EOC cells. The targeting associations between LINC00958 and STAT1 were demonstrated by ChIP analyses combined with luciferase reporter assays. The related proteins of Wnt/β-catenin signaling were determined using RT-PCR. Results Higher levels of LINC00958 were observed in EOC tissues and cell lines. Our data also revealed that high LINC00958 expression was partly induced by STAT1. Functionally, knockdown of LINC00958 suppressed the proliferation, migration, and invasion of EOC cells. Mechanistic investigation showed that the inhibitory effect of LINC00958 knockdown on EOC cells was mediated by the Wnt/β-catenin signaling. Conclusion Our findings suggested that STAT1-induced overexpression of LINC00958 promoted EOC progression by modulating Wnt/β-catenin signaling.
Collapse
|
30
|
Zhu G, Chang X, Kang Y, Zhao X, Tang X, Ma C, Fu S. CircRNA: A novel potential strategy to treat thyroid cancer (Review). Int J Mol Med 2021; 48:201. [PMID: 34528697 PMCID: PMC8480381 DOI: 10.3892/ijmm.2021.5034] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancer (TC) is the most common type of endocrine cancer. Over the last 50 years, the global incidence of TC has been increasing. The survival rate of TC is higher than that of most other types of cancer, but it depends on numerous factors, including the specific type of TC and stage of the disease. Circular RNAs (circRNAs) are a new class of long noncoding RNA with a closed loop structure that have a critical role in the complex gene regulatory network that controls the emergence of TC. The most important function of circRNAs is their ability to specifically bind to microRNAs. In addition, the biological functions of circRNAs also include interactions with proteins, regulation of the transcription of genes and acting as translation templates. Based on the characteristics of circRNAs, they have been identified as potential biomarkers for the diagnosis of tumors. In the present review, the function and significance of circRNAs and their potential clinical implications for TC were summarized. Furthermore, possible treatment approaches involving the use of mesenchymal stem cells (MSCs) and exosomes derived from MSCs as carriers to load and transport circRNAs were discussed.
Collapse
Affiliation(s)
- Guomao Zhu
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xingyu Chang
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yuchen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xinzhu Zhao
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xulei Tang
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Chengxu Ma
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Songbo Fu
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
31
|
Shan L, Hou X. Circular RNA hsa_circ_0026552 inhibits the proliferation, migration and invasion of trophoblast cells via the miR‑331‑3p/TGF‑βR1 axis in pre‑eclampsia. Mol Med Rep 2021; 24:798. [PMID: 34523694 PMCID: PMC8456345 DOI: 10.3892/mmr.2021.12438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/24/2021] [Indexed: 12/01/2022] Open
Abstract
Globally, pre-eclampsia (PE) is a gestational disorder that causes increased morbidity of the fetus and mortality induced by pregnancy. Despite various studies, the understanding of the causes or mechanism of the development of PE remains elusive. Thus, the present study aimed to investigate the role of circular (circ)RNA hsa_circ_0026552 (hsa_circ_0026552) in the development of PE and its mechanism of regulation. hsa_circ_0026552 differential expression in PE tissue data and clinical samples were analyzed and it was observed that hsa_circ_0026552 is highly upregulated in PE samples. Furthermore, miR-331-3p was detected as an hsa_circ_0026552 target miRNA and TGF-βR1 gene as a target of miR-331-3p. These results were confirmed using various assays, including dual-luciferase reporter, reverse transcription-quantitative PCR and RNA pull-down assay. It was observed that miR-331-3p expression was negatively correlated to hsa_circ_0026552 relative expression, while TGF-βR1 expression was positively correlated to hsa_circ_0026552 expression evaluated by Pearson's correlation test. The functional experiments, including Cell Counting Kit-8, colony formation and Transwell assay, showed that silencing hsa_circ_0026552 could significantly strengthen the proliferation, migration and invasion of the trophoblastic HTR-8/SVneo cells, but the subsequent overexpression of hsa_circ_0026552 reversed this. Mechanistically, it was concluded that hsa_circ_0026552 acts as a miR-331-3p sponge to upregulate TGF-βR1 expression in trophoblasts and is involved significantly in PE development and progression in pregnant women. The circRNA hsa_circ_0026552 could be a novel therapeutic target and prognostic biomarker for PE.
Collapse
Affiliation(s)
- Li Shan
- Department of Obstetrics, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiaofei Hou
- Department of Prenatal Screening Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
32
|
Zhang J, Zhou X, Zhu C, Hu Y, Li R, Jin S, Huang D, Ju M, Chen K, Luan C. Whole‑genome identification and systematic analysis of lncRNA‑mRNA co‑expression profiles in patients with cutaneous basal cell carcinoma. Mol Med Rep 2021; 24:631. [PMID: 34278484 PMCID: PMC8281216 DOI: 10.3892/mmr.2021.12270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/10/2021] [Indexed: 11/06/2022] Open
Abstract
Cutaneous basal cell carcinoma (BCC) is a common subtype of malignant skin tumor with low invasiveness. Early diagnosis and treatment of BCC and the identification of specific biomarkers are particularly urgent. Long non‑coding RNAs (lncRNAs) have been shown to be associated with the development of various tumors, including BCC. The present study conducted a comparative analysis of the differential expression of lncRNAs and mRNAs through whole‑genome technology. Microarray analyses were used to identify differentially expressed (DE) lncRNAs and DE mRNAs. Reverse transcription‑quantitative (RT‑q) PCR confirmed the differential expression of 10 lncRNAs in BCC. Subsequently, a lncRNA‑mRNA co‑expression network was constructed using the top 10 DE lncRNAs. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the possible biological effects of the identified mRNAs and to speculate on the possible biological effects of the lncRNAs. A total of 1,838 DE lncRNAs and 2,010 DE mRNAs were identified and 10 of the DE lncRNAs were confirmed by RT‑qPCR. A lncRNA‑mRNA co‑expression network comprising 166 specific co‑expressed lncRNAs and mRNAs was constructed using the top 10 DE lncRNAs. According to the results of the GO and KEGG analyses, lncRNA XR_428612.1 may serve an important role in mitochondrial dysfunction and the progression of BCC by modulating TICAM1, USMG5, COX7A2, FBXO10, ATP5E and TIMM8B. The present study provided whole‑genome identification and a systematic analysis of lncRNA‑mRNA co‑expression profiles in BCC.
Collapse
Affiliation(s)
- Jiaan Zhang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Xuyue Zhou
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Chenpu Zhu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Yu Hu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Rong Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Shuang Jin
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Dan Huang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Mei Ju
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Kun Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Chao Luan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| |
Collapse
|
33
|
Campbell RA, Docherty MH, Ferenbach DA, Mylonas KJ. The Role of Ageing and Parenchymal Senescence on Macrophage Function and Fibrosis. Front Immunol 2021; 12:700790. [PMID: 34220864 PMCID: PMC8248495 DOI: 10.3389/fimmu.2021.700790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
In this review, we examine senescent cells and the overlap between the direct biological impact of senescence and the indirect impact senescence has via its effects on other cell types, particularly the macrophage. The canonical roles of macrophages in cell clearance and in other physiological functions are discussed with reference to their functions in diseases of the kidney and other organs. We also explore the translational potential of different approaches based around the macrophage in future interventions to target senescent cells, with the goal of preventing or reversing pathologies driven or contributed to in part by senescent cell load in vivo.
Collapse
Affiliation(s)
- Ross A. Campbell
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie-Helena Docherty
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - David A. Ferenbach
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Katie J. Mylonas
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
34
|
Fang H, Kang L, Abbas Z, Hu L, Chen Y, Tan X, Wang Y, Xu Q. Identification of key Genes and Pathways Associated With Thermal Stress in Peripheral Blood Mononuclear Cells of Holstein Dairy Cattle. Front Genet 2021; 12:662080. [PMID: 34178029 PMCID: PMC8222911 DOI: 10.3389/fgene.2021.662080] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
The objectives of the present study were to identify key genes and biological pathways associated with thermal stress in Chinese Holstein dairy cattle. Hence, we constructed a cell-model, applied various molecular biology experimental techniques and bioinformatics analysis. A total of 55 candidate genes were screened from published literature and the IPA database to examine its regulation under cold (25°C) or heat (42°C) stress in PBMCs. We identified 29 (3 up-regulated and 26 down-regulated) and 41 (15 up-regulated and 26 down-regulated) significantly differentially expressed genes (DEGs) (fold change ≥ 1.2-fold and P < 0.05) after cold and heat stress treatments, respectively. Furthermore, bioinformatics analyses confirmed that major biological processes and pathways associated with thermal stress include protein folding and refolding, protein phosphorylation, transcription factor binding, immune effector process, negative regulation of cell proliferation, autophagy, apoptosis, protein processing in endoplasmic reticulum, estrogen signaling pathway, pathways related to cancer, PI3K- Akt signaling pathway, and MAPK signaling pathway. Based on validation at the cellular and individual levels, the mRNA expression of the HIF1A gene showed upregulation during cold stress and the EIF2A, HSPA1A, HSP90AA1, and HSF1 genes showed downregulation after heat exposure. The RT-qPCR and western blot results revealed that the HIF1A after cold stress and the EIF2A, HSPA1A, HSP90AA1, and HSF1 after heat stress had consistent trend changes at the cellular transcription and translation levels, suggesting as key genes associated with thermal stress response in Holstein dairy cattle. The cellular model established in this study with PBMCs provides a suitable platform to improve our understanding of thermal stress in dairy cattle. Moreover, this study provides an opportunity to develop simultaneously both high-yielding and thermotolerant Chinese Holstein cattle through marker-assisted selection.
Collapse
Affiliation(s)
- Hao Fang
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Ling Kang
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Zaheer Abbas
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Lirong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yumei Chen
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Xiao Tan
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qing Xu
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
35
|
Zhang M, Gao F, Yu X, Zhang Q, Sun Z, He Y, Guo W. LINC00261: a burgeoning long noncoding RNA related to cancer. Cancer Cell Int 2021; 21:274. [PMID: 34022894 PMCID: PMC8141177 DOI: 10.1186/s12935-021-01988-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), are transcripts longer than 200 nucleotides that are considered to be vital regulators of many cellular processes, particularly in tumorigenesis and cancer progression. long intergenic non-protein coding RNA 261 (LINC00261), a recently discovered lncRNA, is abnormally expressed in a variety of human malignancies, including pancreatic cancer, gastric cancer, colorectal cancer, lung cancer, hepatocellular carcinoma, breast cancer, laryngeal carcinoma, endometrial carcinoma, esophageal cancer, prostate cancer, choriocarcinoma, and cholangiocarcinoma. LINC00261 mainly functions as a tumor suppressor that regulates a variety of biological processes in the above-mentioned cancers, such as cell proliferation, apoptosis, motility, chemoresistance, and tumorigenesis. In addition, the up-regulation of LINC00261 is closely correlated with both favorable prognoses and many clinical characteristics. In the present review, we summarize recent research documenting the expression and biological mechanisms of LINC00261 in tumor development. These findings suggest that LINC00261, as a tumor suppressor, has bright prospects both as a biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Fang Gao
- Health Management Center, Binzhou People's Hospital, Binzhou, 256600, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
36
|
Avolio R, Bechara E, Tartaglia GG. The quest for long non-coding RNAs involved in aging. NATURE AGING 2021; 1:418-419. [PMID: 37118017 DOI: 10.1038/s43587-021-00069-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elias Bechara
- Center for Human Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Gian Gaetano Tartaglia
- Center for Human Technology, Istituto Italiano di Tecnologia, Genoa, Italy.
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy.
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
37
|
Leon KE, Tangudu NK, Aird KM, Buj R. Loss of p16: A Bouncer of the Immunological Surveillance? Life (Basel) 2021; 11:309. [PMID: 33918220 PMCID: PMC8065641 DOI: 10.3390/life11040309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
p16INK4A (hereafter called p16) is an important tumor suppressor protein frequently suppressed in human cancer and highly upregulated in many types of senescence. Although its role as a cell cycle regulator is very well delineated, little is known about its other non-cell cycle-related roles. Importantly, recent correlative studies suggest that p16 may be a regulator of tissue immunological surveillance through the transcriptional regulation of different chemokines, interleukins and other factors secreted as part of the senescence-associated secretory phenotype (SASP). Here, we summarize the current evidence supporting the hypothesis that p16 is a regulator of tumor immunity.
Collapse
Affiliation(s)
- Kelly E. Leon
- UPMC Hillman Cancer Center, Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (K.E.L.); (N.K.T.); (K.M.A.)
- Biomedical Sciences Graduate Program, Penn State College of Medicine, Hershey, PA 15213, USA
| | - Naveen Kumar Tangudu
- UPMC Hillman Cancer Center, Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (K.E.L.); (N.K.T.); (K.M.A.)
| | - Katherine M. Aird
- UPMC Hillman Cancer Center, Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (K.E.L.); (N.K.T.); (K.M.A.)
| | - Raquel Buj
- UPMC Hillman Cancer Center, Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (K.E.L.); (N.K.T.); (K.M.A.)
| |
Collapse
|
38
|
Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol 2021; 9:645593. [PMID: 33855023 PMCID: PMC8039141 DOI: 10.3389/fcell.2021.645593] [Citation(s) in RCA: 826] [Impact Index Per Article: 206.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stimuli, as well as developmental signals. Senescence is considered to be a highly dynamic, multi-step process, during which the properties of senescent cells continuously evolve and diversify in a context dependent manner. It is associated with multiple cellular and molecular changes and distinct phenotypic alterations, including a stable proliferation arrest unresponsive to mitogenic stimuli. Senescent cells remain viable, have alterations in metabolic activity and undergo dramatic changes in gene expression and develop a complex senescence-associated secretory phenotype. Cellular senescence can compromise tissue repair and regeneration, thereby contributing toward aging. Removal of senescent cells can attenuate age-related tissue dysfunction and extend health span. Senescence can also act as a potent anti-tumor mechanism, by preventing proliferation of potentially cancerous cells. It is a cellular program which acts as a double-edged sword, with both beneficial and detrimental effects on the health of the organism, and considered to be an example of evolutionary antagonistic pleiotropy. Activation of the p53/p21WAF1/CIP1 and p16INK4A/pRB tumor suppressor pathways play a central role in regulating senescence. Several other pathways have recently been implicated in mediating senescence and the senescent phenotype. Herein we review the molecular mechanisms that underlie cellular senescence and the senescence associated growth arrest with a particular focus on why cells stop dividing, the stability of the growth arrest, the hypersecretory phenotype and how the different pathways are all integrated.
Collapse
Affiliation(s)
- Ruchi Kumari
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Parmjit Jat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| |
Collapse
|
39
|
Cai J, Qi H, Yao K, Yao Y, Jing D, Liao W, Zhao Z. Non-Coding RNAs Steering the Senescence-Related Progress, Properties, and Application of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:650431. [PMID: 33816501 PMCID: PMC8017203 DOI: 10.3389/fcell.2021.650431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
The thirst to postpone and even reverse aging progress has never been quenched after all these decades. Unequivocally, mesenchymal stem cells (MSCs), with extraordinary abilities such as self-renewal and multi-directional differentiation, deserve the limelight in this topic. Though having several affable clinical traits, MSCs going through senescence would, on one hand, contribute to age-related diseases and, on the other hand, lead to compromised or even counterproductive therapeutical outcomes. Notably, increasing evidence suggests that non-coding RNAs (ncRNAs) could invigorate various regulatory processes. With even a slight dip or an uptick of expression, ncRNAs would make a dent in or even overturn cellular fate. Thereby, a systematic illustration of ncRNAs identified so far to steer MSCs during senescence is axiomatically an urgent need. In this review, we introduce the general properties and mechanisms of senescence and its relationship with MSCs and illustrate the ncRNAs playing a role in the cellular senescence of MSCs. It is then followed by the elucidation of ncRNAs embodied in extracellular vesicles connecting senescent MSCs with other cells and diversified processes in and beyond the skeletal system. Last, we provide a glimpse into the clinical methodologies of ncRNA-based therapies in MSC-related fields. Hopefully, the intricate relationship between senescence and MSCs will be revealed one day and our work could be a crucial stepping-stone toward that future.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hexu Qi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, Osaka Dental University, Hirakata, Japan
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Cuollo L, Antonangeli F, Santoni A, Soriani A. The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. BIOLOGY 2020; 9:biology9120485. [PMID: 33371508 PMCID: PMC7767554 DOI: 10.3390/biology9120485] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary A fundamental feature of cellular senescence is the emergence of the Senescence-Associated Secretory Phenotype (SASP), which represents a considerable source of inflammatory and tissue-remodeling cues. The pathophysiological relevance of senescence and SASP has generated a fertile area of research aimed at manipulating the SASP to fight cancer and age-related conditions. This review enlightens the most important mechanisms that regulate the SASP and summarizes the current evidence on the feasibility of intervening on its composition, providing a reading frame of the general potentialities of SASP modulation. Abstract Cellular senescence represents a robust tumor-protecting mechanism that halts the proliferation of stressed or premalignant cells. However, this state of stable proliferative arrest is accompanied by the Senescence-Associated Secretory Phenotype (SASP), which entails the copious secretion of proinflammatory signals in the tissue microenvironment and contributes to age-related conditions, including, paradoxically, cancer. Novel therapeutic strategies aim at eliminating senescent cells with the use of senolytics or abolishing the SASP without killing the senescent cell with the use of the so-called “senomorphics”. In addition, recent works demonstrate the possibility of modifying the composition of the secretome by genetic or pharmacological intervention. The purpose is not to renounce the potent immunostimulatory nature of SASP, but rather learning to modulate it for combating cancer and other age-related diseases. This review describes the main molecular mechanisms regulating the SASP and reports the evidence of the feasibility of abrogating or modulating the SASP, discussing the possible implications of both strategies.
Collapse
Affiliation(s)
- Lorenzo Cuollo
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (L.C.); (A.S.)
- Center for Life Nano Science, Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), 00185 Rome, Italy;
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (L.C.); (A.S.)
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Neuromed, 86077 Pozzilli, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (L.C.); (A.S.)
- Correspondence:
| |
Collapse
|
41
|
Adamczyk-Grochala J, Lewinska A. Nano-Based Theranostic Tools for the Detection and Elimination of Senescent Cells. Cells 2020; 9:E2659. [PMID: 33322013 PMCID: PMC7764355 DOI: 10.3390/cells9122659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The progressive accumulation of apoptosis-resistant and secretory active senescent cells (SCs) in animal and human aged tissues may limit lifespan and healthspan and lead to age-related diseases such as cancer, neurodegenerative disorders, and metabolic syndrome. Thus, SCs are suggested targets in anti-aging therapy. In the last two decades, a number of nanomaterials have gained much attention as innovative tools in theranostic applications due to their unique properties improving target visualization, drug and gene delivery, controlled drug release, effective diagnosis, and successful therapy. Although the healthcare industry has focused on a plethora of applications of nanomaterials, it remains elusive how nanomaterials may modulate cellular senescence, a hallmark of aging. In this review paper, we consider novel nanotechnology-based strategies for healthspan promotion and the prevention of age-related dysfunctions that are based on the delivery of therapeutic compounds capable to preferentially killing SCs (nano-senolytics) and/or modulating a proinflammatory secretome (nano-senomorphics/nano-senostatics). Recent examples of SC-targeted nanomaterials and the mechanisms underlying different aspects of the nanomaterial-mediated senolysis are presented and discussed.
Collapse
Affiliation(s)
- Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Anna Lewinska
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
42
|
Wei W, Ji L, Duan W, Zhu J. CircSAMD4A contributes to cell doxorubicin resistance in osteosarcoma by regulating the miR-218-5p/KLF8 axis. Open Life Sci 2020; 15:848-859. [PMID: 33817271 PMCID: PMC7747519 DOI: 10.1515/biol-2020-0079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/16/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNA sterile alpha motif domain containing 4A (circSAMD4A) was found to be differentially expressed in osteosarcoma and contributed to the tumorigenesis of osteosarcoma. However, the role of circSAMD4A in doxorubicin (DXR) resistance of osteosarcoma is yet to be elucidated. Levels of circSAMD4A, microRNA (miR)-218-5p and Krüppel-like factor 8 (KLF8) were detected using quantitative reverse transcription-polymerase chain reaction. Western blot was applied to detect the protein levels of KLF8, cyclin D1 and p21. Cell viability, cell cycle, migration and invasion were analyzed using Cell Counting Kit-8 assay, flow cytometry and transwell assay, respectively. The interaction between miR-218-5p and circSAMD4A or KLF8 was verified using dual-luciferase reporter assay or RNA immunoprecipitation assay. In vivo experiments were performed using murine xenograft models. CircSAMD4A and KLF8 were elevated in osteosarcoma, and knockdown of circSAMD4A or KLF8 sensitized osteosarcoma cells to DXR by mediating resistant cell viability, migration and invasion inhibition, and cell cycle arrest in vitro. miR-218-5p was decreased in osteosarcoma, and miR-218-5p inhibition enhanced DXR resistance. Besides, miR-218-5p was found to bind to circSAMD4A or KLF8, and subsequent rescue experiments indicated that miR-218-5p inhibition reversed the inhibitory effects of circSAMD4A silencing on DXR resistance, and silencing miR-218-5p enhanced DXR resistance by targeting KLF8 in osteosarcoma cells. Moreover, circSAMD4A could indirectly regulate KLF8 via miR-218-5p. Additionally, circSAMD4A knockdown enhanced the cytotoxicity of DXR in osteosarcoma in vivo via regulating miR-218-5p and KLF8. In all, circSAMD4A enhanced cell DXR resistance in osteosarcoma by regulating the miR-218-5p/KLF8 axis, suggesting a novel therapeutic target for therapy-resistant osteosarcoma.
Collapse
Affiliation(s)
- Wei Wei
- Department of orthopedics, Shaoxing Shangyu People's Hospital, No. 517, Shimin Avenue, Baiguan Street, Shangyu District, Shaoxing, Zhejiang Province, 312300, China
| | - Liefeng Ji
- Department of orthopedics, Shaoxing Shangyu People's Hospital, No. 517, Shimin Avenue, Baiguan Street, Shangyu District, Shaoxing, Zhejiang Province, 312300, China
| | - Wanli Duan
- Department of orthopedics, Shaoxing Shangyu People's Hospital, No. 517, Shimin Avenue, Baiguan Street, Shangyu District, Shaoxing, Zhejiang Province, 312300, China
| | - Jiang Zhu
- Department of orthopedics, Shaoxing Shangyu People's Hospital, No. 517, Shimin Avenue, Baiguan Street, Shangyu District, Shaoxing, Zhejiang Province, 312300, China
| |
Collapse
|
43
|
Ye Y, Li M, Chen L, Li S, Quan Z. Circ-AK2 is associated with preeclampsia and regulates biological behaviors of trophoblast cells through miR-454-3p/THBS2. Placenta 2020; 103:156-163. [PMID: 33129036 DOI: 10.1016/j.placenta.2020.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Circ-AK2 has been found to be differentially expressed in PE placenta tissues, however, the role and the underlying molecular mechanisms of circ-AK2 in PE remain poorly known. METHODS The expression of circ-AK2, miR-454-3p, and THBS2 mRNA was detected using quantitative real-time polymerase chain reaction. Protein levels of CyclinD1, MMP-9 and THBS2 were measured using Western blot. Cell proliferation, migration, and invasion were analyzed by 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) assay and transwell assay. The interaction between miR-454-3p and circ-AK2 or THBS2 was analyzed by the dual-luciferase reporter assay. RESULTS Circ-AK2 was highly expressed in placental tissues of PE, and overexpression of circ-AK2 inhibited trophoblast cell proliferation, migration and invasion. Circ-AK2 directly bound to miR-454-3p, and miR-454-3p overexpression reversed the inhibitory action of circ-AK2 in biological functions of trophoblast cells. MiR-454-3p was lowly expressed in placental tissues of PE, and directly regulated THBS2 expression in a targeted manner. Silencing miR-454-3p suppressed the proliferating, migratory, and invasive abilities of trophoblast cells, while this condition was abolished by THBS2 knockdown. Besides, we also proved circ-AK2 could regulate THBS2 expression via miR-454-3p. DISCUSSION Circ-AK2 inhibited the proliferation, migration and invasion of trophoblast cells via targeting miR-454-3p/THBS2 axis, suggesting a novel insight into the etiology of PE and a potential therapeutic target for PE treatment.
Collapse
Affiliation(s)
- Yingqin Ye
- Reproductive Medicine Center, Jingmen No.1 People's Hospital, Jingmen, Hubei, China
| | - Mei Li
- Maternity Department, Jingmen No.1 People's Hospital, Jingmen, Hubei, China
| | - Lu Chen
- School of Clinical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Shuxian Li
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhengzhao Quan
- Maternity Department, Jingmen No.1 People's Hospital, Jingmen, Hubei, China.
| |
Collapse
|
44
|
Liu Z, Liu F, Wang F, Yang X, Guo W. CircZNF609 promotes cell proliferation, migration, invasion, and glycolysis in nasopharyngeal carcinoma through regulating HRAS via miR-338-3p. Mol Cell Biochem 2020; 476:175-186. [PMID: 32970285 DOI: 10.1007/s11010-020-03894-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 08/23/2020] [Indexed: 01/26/2023]
Abstract
Circular RNA zinc finger protein 609 (circZNF609) has been reported to involve in nasopharyngeal carcinoma (NPC) tumorigenesis regulation. However, the role and the molecular mechanism of circZNF609 in NPC remain unclear. Levels of circZNF609, microRNA (miR)-338-3p, and GTPase HRas (HRAS) were detected by quantitative real-time polymerase chain reaction or Western blot. Cell proliferation, migration, and invasion were analyzed using cell counting kit-8 assay, colony formation assay, and transwell assay, respectively. Glucose metabolism was calculated by measuring glucose consumption, lactate production, adenosine triphosphate (ATP) levels, and HK2 activity. The interaction between miR-338-3p and circZNF609 or HRAS was analyzed by the dual-luciferase reporter assay. In vivo experiment was conducted using the murine xenograft model. CircZNF609 was elevated in NPC tissues and cell lines, and high circZNF609 expression had a poor prognosis. CircZNF609 knockdown suppressed NPC progression in vitro by inhibiting cell proliferation, migration, invasion, and glycolysis and hindered tumor growth in vivo. MiR-338-3p directly bound to circZNF609 and HRAS, and circZNF609 knockdown repressed NPC cell malignant properties by binding to miR-338-3p. MiR-338-3p was low in NPC, and miR-338-3p restoration performed anti-tumor effects in cells of NPC by targeting HRAS. Importantly, circZNF609 acted as a competing endogenous RNA of miR-338-3p to regulate HRAS. CircZNF609 knockdown suppressed cell tumorigenesis in NPC via regulating miR-338-3p/HRAS axis, suggesting a novel therapeutic strategy for NPC.
Collapse
Affiliation(s)
- Zhonglu Liu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, China
| | - Feifei Liu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, China
| | - Fang Wang
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xin Yang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, China.
| | - Wentao Guo
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, China.
| |
Collapse
|
45
|
Cui G, Wang L, Huang W. Circular RNA HIPK3 regulates human lens epithelial cell dysfunction by targeting the miR-221-3p/PI3K/AKT pathway in age-related cataract. Exp Eye Res 2020; 198:108128. [PMID: 32681842 DOI: 10.1016/j.exer.2020.108128] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Circular RNA Homeodomain Interacting Protein Kinase 3 (circHIPK3) was found to involve in the pathogenesis of age-related cataract (ARC). Here, we further disclosed the related target genes and molecular mechanism of circHIPK3 in the ARC progression. The expression of circHIPK3, microRNA (miR)-221-3p was detected using the quantitative real-time polymerase chain reaction. Human lens epithelial cell (HLEC) proliferation and apoptosis were measured by 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) assay and flow cytometry, respectively. Western blot was used to detect the levels of apoptosis-related proteins, and phosphoinositide 3-kinase (PI3K)/p-protein kinase B (AKT) pathway-related proteins. Levels of malondialdehyde (MDA) and glutathione peroxidase (GSH-PX) were measured by kits. The interaction between miR-221-3p and circHIPK3 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assay. CircHIPK3 was down-regulated while miR-221-3p was up-regulated in human lens epithelium samples of ARC patients. CircHIPK3 up-regulation or miR-221-3p down-regulation mediated the promotion of proliferation, inhibition of apoptosis, decrease of MDA level as well as increase of GSH-PX level in HLECs. MiR-221-3p was a target of circHIPK3, and miR-221-3p overexpression reversed the protective action of circHIPK in HLEC functions. In addition, circHIPK3 activated PI3K/AKT pathway via regulating miR-221-3p, and silencing miR-221-3p protected HLECs from dysfunction by activating PI3K/AKT pathway. We demonstrated that circHIPK3 protected HLECs from dysfunction by regulating miR-221-3p/PI3K/AKT pathway, indicating a new insight into the pathogenesis of ARC and providing a potential therapeutic target for ARC.
Collapse
Affiliation(s)
- Gangfeng Cui
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, 317000, China.
| | - Ledan Wang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, 317000, China
| | - Wenjuan Huang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, 317000, China
| |
Collapse
|
46
|
Liu Y, Xu J, Jiang M, Ni L, Ling Y. CircRNA DONSON contributes to cisplatin resistance in gastric cancer cells by regulating miR-802/BMI1 axis. Cancer Cell Int 2020; 20:261. [PMID: 32581651 PMCID: PMC7310092 DOI: 10.1186/s12935-020-01358-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background Circular RNA downstream neighbor of SON (circDONSON) has been revealed to promote gastric cancer (GC) growth and invasion, while the role and molecular mechanism underlying circDONSON in GC cisplatin (DDP) resistance remain unclear. Methods Levels of circDONSON, microRNA (miR)-802, and B lymphoma Mo-MLV insertion region 1 (BMI1) mRNA were detected using quantitative real-time polymerase chain reaction. Cell viability and apoptosis were measured by cell counting kit-8 assay, colony formation assay and flow cytometry, respectively. Protein levels of BMI1, Cyclin D1, p27, Caspase-3 Cleavage and Caspase-9 Cleavage were determined by western blot. The interaction between miR-802 and circDONSON or BMI1 was confirmed by dual-luciferase reporter assay. In vivo experiments were conducted via the murine xenograft model. Results CircDONSON was elevated in GC tissues and cell lines, especially in DDP-resistant GC tissues and cells. Knockdown of circDONSON sensitized GC cells to DDP by inhibiting cell viability and promoting cell apoptosis in vitro. Further mechanism-related investigations suggested that circDONSON functioned as “sponge” by competing for miR-802 binding to modulate its target BMI1. Silencing miR-802 reversed the inhibition of DDP-resistance in GC cells induced by circDONSON down-regulation. Besides, miR-802 alleviated DDP resistance in GC cells by targeting BMI1. Functionally, circDONSON knockdown enhanced the cytotoxicity of DDP in GC in vivo. Conclusion Our findings demonstrated circDONSON promoted cisplatin resistance in gastric cancer cells by regulating miR-802/BMI1 axis, shedding light on the development of a novel therapeutic strategy to overcome chemoresistance in gastric cancer patients.
Collapse
Affiliation(s)
- Yong Liu
- Department of Oncology, The Third Affiliated Hospital of Soochow University (Changzhou Tumor Hospital Affiliated to Soochow University), No. 68, Honghe Road, Changzhou, 213000 Jiangsu China
| | - Jianzhong Xu
- Department of Oncology, The Third Affiliated Hospital of Soochow University (Changzhou Tumor Hospital Affiliated to Soochow University), No. 68, Honghe Road, Changzhou, 213000 Jiangsu China
| | - Min Jiang
- Department of Oncology, The Third Affiliated Hospital of Soochow University (Changzhou Tumor Hospital Affiliated to Soochow University), No. 68, Honghe Road, Changzhou, 213000 Jiangsu China
| | - Lingna Ni
- Department of Oncology, The Third Affiliated Hospital of Soochow University (Changzhou Tumor Hospital Affiliated to Soochow University), No. 68, Honghe Road, Changzhou, 213000 Jiangsu China
| | - Yang Ling
- Department of Oncology, The Third Affiliated Hospital of Soochow University (Changzhou Tumor Hospital Affiliated to Soochow University), No. 68, Honghe Road, Changzhou, 213000 Jiangsu China
| |
Collapse
|
47
|
Zhu H, Niu X, Li Q, Zhao Y, Chen X, Sun H. Circ_0085296 suppresses trophoblast cell proliferation, invasion, and migration via modulating miR-144/E-cadherin axis. Placenta 2020; 97:18-25. [PMID: 32792057 DOI: 10.1016/j.placenta.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been revealed to be important regulators in the biological behavior of cells, and aberrant circRNAs may be associated with the etiology of pre-eclampsia (PE). However, the role and underlying molecular mechanisms of circ_0085296 in PE remain unclear. METHODS The expression of circ_0085296, microRNA (miR)-144, and E-cadherin was detected using quantitative real-time polymerase chain reaction and western blot, respectively. Cell proliferation, migration, and invasion were analyzed by cell counting kit-8, colony formation and transwell assay. The interaction between miR-144 and circ_0085296 or E-cadherin was analyzed by the dual-luciferase reporter assay and pull-down assay. RESULTS Circ_0085296 was elevated in PE placental tissues, knockdown of circ_0085296 promoted trophoblast cell proliferation, invasion, and migration, while circ_0085296 up-regulation showed opposite effects. MiR-144 was down-regulated in PE placental tissues, and restoration of miR-144 induced proliferation, invasion, and migration in trophoblast cells. Further mechanistic analysis found miR-144 directly bound to circ_0085296 and E-cadherin, and circ_0085296 functioned as a sponge of miR-144 to regulate E-cadherin expression. Furthermore, miR-144 inhibition or E-cadherin overexpression attenuated the effectsof circ_0085296 on cell processes in trophoblast cells. CONCLUSION Circ_0085296 inhibited trophoblast cell proliferation, invasion, and migration via regulating miR-144/E-cadherin axis, providing a novel insight into the pathogenesis of PE and a new prospective therapeutic target for PE patients.
Collapse
Affiliation(s)
- Hailing Zhu
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xia Niu
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Qinghua Li
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yuehua Zhao
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xue Chen
- Department of Pediatric, The Sunshine Union Hospital, Weifang, Shandong, China
| | - Hesheng Sun
- Department of Pediatric, The Sunshine Union Hospital, Weifang, Shandong, China.
| |
Collapse
|
48
|
Cazzanelli P, Wuertz-Kozak K. MicroRNAs in Intervertebral Disc Degeneration, Apoptosis, Inflammation, and Mechanobiology. Int J Mol Sci 2020; 21:ijms21103601. [PMID: 32443722 PMCID: PMC7279351 DOI: 10.3390/ijms21103601] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a multifactorial pathological process associated with low back pain, the leading cause of years lived in disability worldwide. Key characteristics of the pathological changes connected with degenerative disc disease (DDD) are the degradation of the extracellular matrix (ECM), apoptosis and senescence, as well as inflammation. The impact of nonphysiological mechanical stresses on IVD degeneration and inflammation, the mechanisms of mechanotransduction, and the role of mechanosensitive miRNAs are of increasing interest. As post-transcriptional regulators, miRNAs are known to affect the expression of 30% of proteincoding genes and numerous intracellular processes. The dysregulation of miRNAs is therefore associated with various pathologies, including degenerative diseases such as DDD. This review aims to give an overview of the current status of miRNA research in degenerative disc pathology, with a special focus on the involvement of miRNAs in ECM degradation, apoptosis, and inflammation, as well as mechanobiology.
Collapse
Affiliation(s)
- Petra Cazzanelli
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
- Correspondence: ; Tel.: +1-585-475-7355
| |
Collapse
|
49
|
Ferrucci L, Gonzalez‐Freire M, Fabbri E, Simonsick E, Tanaka T, Moore Z, Salimi S, Sierra F, de Cabo R. Measuring biological aging in humans: A quest. Aging Cell 2020; 19:e13080. [PMID: 31833194 PMCID: PMC6996955 DOI: 10.1111/acel.13080] [Citation(s) in RCA: 403] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/16/2022] Open
Abstract
The global population of individuals over the age of 65 is growing at an unprecedented rate and is expected to reach 1.6 billion by 2050. Most older individuals are affected by multiple chronic diseases, leading to complex drug treatments and increased risk of physical and cognitive disability. Improving or preserving the health and quality of life of these individuals is challenging due to a lack of well-established clinical guidelines. Physicians are often forced to engage in cycles of "trial and error" that are centered on palliative treatment of symptoms rather than the root cause, often resulting in dubious outcomes. Recently, geroscience challenged this view, proposing that the underlying biological mechanisms of aging are central to the global increase in susceptibility to disease and disability that occurs with aging. In fact, strong correlations have recently been revealed between health dimensions and phenotypes that are typical of aging, especially with autophagy, mitochondrial function, cellular senescence, and DNA methylation. Current research focuses on measuring the pace of aging to identify individuals who are "aging faster" to test and develop interventions that could prevent or delay the progression of multimorbidity and disability with aging. Understanding how the underlying biological mechanisms of aging connect to and impact longitudinal changes in health trajectories offers a unique opportunity to identify resilience mechanisms, their dynamic changes, and their impact on stress responses. Harnessing how to evoke and control resilience mechanisms in individuals with successful aging could lead to writing a new chapter in human medicine.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Marta Gonzalez‐Freire
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Elisa Fabbri
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
- Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Eleanor Simonsick
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Toshiko Tanaka
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Zenobia Moore
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Shabnam Salimi
- Department of Epidemiology and Public HealthUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Felipe Sierra
- Division of Aging BiologyNational Institute on AgingNIHBethesdaMDUSA
| | - Rafael de Cabo
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| |
Collapse
|
50
|
Ullah M, Ng NN, Concepcion W, Thakor AS. Emerging role of stem cell-derived extracellular microRNAs in age-associated human diseases and in different therapies of longevity. Ageing Res Rev 2020; 57:100979. [PMID: 31704472 DOI: 10.1016/j.arr.2019.100979] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
Organismal aging involves the progressive decline in organ function and increased susceptibility to age-associated diseases. This has been associated with the aging of stem cell populations within the body that decreases the capacity of stem cells to self-renew, differentiate, and regenerate damaged tissues and organs. This review aims to explore how aging is associated with the dysregulation of stem cell-derived extracellular vesicles (SCEVs) and their corresponding miRNA cargo (SCEV-miRNAs), which are short non-coding RNAs involved in post-transcriptional regulation of target genes. Recent evidence has suggested that in aging stem cells, SCEV-miRNAs may play a vital role regulating various processes that contribute to aging: cellular senescence, stem cell exhaustion, telomere length, and circadian rhythm. Hence, further clarifying the age-dependent molecular mechanisms through which SCEV-miRNAs exert their downstream effects may inform a greater understanding of the biology of aging, elucidate their role in stem cell function, and identify important targets for future regenerative therapies. Additionally, current studies evaluating therapeutic role of SCEVs and SCEV-miRNAs in treating several age-associated diseases are also discussed.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA.
| | - Nathan Norton Ng
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA
| | - Waldo Concepcion
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA
| |
Collapse
|