1
|
Bobadilla Muñoz M, Orbe J, Abizanda G, Machado FJD, Vilas A, Ullate-Agote A, Extramiana L, Baraibar Churio A, Aranguren XL, Cantero G, Sáinz Amillo N, Rodríguez JA, Ramos García L, Romero Riojas JP, Vallejo-Illarramendi A, Paradas C, López de Munain A, Páramo JA, Prósper F, Pérez-Ruiz A. Loss of the matrix metalloproteinase-10 causes premature features of aging in satellite cells. Front Cell Dev Biol 2023; 11:1128534. [PMID: 37228645 PMCID: PMC10203875 DOI: 10.3389/fcell.2023.1128534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Aged muscles accumulate satellite cells with a striking decline response to damage. Although intrinsic defects in satellite cells themselves are the major contributors to aging-associated stem cell dysfunction, increasing evidence suggests that changes in the muscle-stem cell local microenvironment also contribute to aging. Here, we demonstrate that loss of the matrix metalloproteinase-10 (MMP-10) in young mice alters the composition of the muscle extracellular matrix (ECM), and specifically disrupts the extracellular matrix of the satellite cell niche. This situation causes premature features of aging in the satellite cells, contributing to their functional decline and a predisposition to enter senescence under proliferative pressure. Similarly, reduction of MMP-10 levels in young satellite cells from wild type animals induces a senescence response, while addition of the protease delays this program. Significantly, the effect of MMP-10 on satellite cell aging can be extended to another context of muscle wasting, muscular dystrophy. Systemic treatment of mdx dystrophic mice with MMP-10 prevents the muscle deterioration phenotype and reduces cellular damage in the satellite cells, which are normally under replicative pressure. Most importantly, MMP-10 conserves its protective effect in the satellite cell-derived myoblasts isolated from a Duchenne muscular dystrophy patient by decreasing the accumulation of damaged DNA. Hence, MMP-10 provides a previously unrecognized therapeutic opportunity to delay satellite cell aging and overcome satellite cell dysfunction in dystrophic muscles.
Collapse
Affiliation(s)
- Miriam Bobadilla Muñoz
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Josune Orbe
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS)-Ictus, Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Abizanda
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Florencio J. D. Machado
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
| | - Amaia Vilas
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Asier Ullate-Agote
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Leire Extramiana
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Arantxa Baraibar Churio
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Xabier L. Aranguren
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Gloria Cantero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Neuromuscular Disorders Unit, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Neira Sáinz Amillo
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Centre for Nutrition Research, Universidad de Navarra, Pamplona, Spain
| | - José Antonio Rodríguez
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Ramos García
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Radiology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, San Sebastian, Spain
| | - Juan Pablo Romero Riojas
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | | | - Carmen Paradas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Neuromuscular Disorders Unit, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Adolfo López de Munain
- CIBERNED-Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
- Neurology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, San Sebastian, Spain
| | - José Antonio Páramo
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Hematology Service, Clínica Universidad de Navarra, Pamplona, Spain
| | - Felipe Prósper
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
| | - Ana Pérez-Ruiz
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
2
|
Hong X, Muñoz-Cánoves P. Measuring Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Muscle Stem Cells Using a Seahorse Analyzer: Applicability for Aging Studies. Methods Mol Biol 2023; 2640:73-88. [PMID: 36995588 DOI: 10.1007/978-1-0716-3036-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
In recent years, evidence showing metabolism as a fundamental regulator of stem cell functions has emerged. In skeletal muscle, its stem cells (satellite cells) sustain muscle regeneration, although they lose their regenerative potential with aging, and this has been attributed, at least in part, to changes in their metabolism. In this chapter, we describe a protocol to analyze the metabolism of satellite cells using the Seahorse technology, which can be applied to aging mice.
Collapse
Affiliation(s)
- Xiaotong Hong
- Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain
- Altos Labs Inc, San Diego, CA, USA
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain.
- Altos Labs Inc, San Diego, CA, USA.
| |
Collapse
|
3
|
Montserrat-Vazquez S, Ali NJ, Matteini F, Lozano J, Zhaowei T, Mejia-Ramirez E, Marka G, Vollmer A, Soller K, Sacma M, Sakk V, Mularoni L, Mallm JP, Plass M, Zheng Y, Geiger H, Florian MC. Transplanting rejuvenated blood stem cells extends lifespan of aged immunocompromised mice. NPJ Regen Med 2022; 7:78. [PMID: 36581635 PMCID: PMC9800381 DOI: 10.1038/s41536-022-00275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
One goal of regenerative medicine is to rejuvenate tissues and extend lifespan by restoring the function of endogenous aged stem cells. However, evidence that somatic stem cells can be targeted in vivo to extend lifespan is still lacking. Here, we demonstrate that after a short systemic treatment with a specific inhibitor of the small RhoGTPase Cdc42 (CASIN), transplanting aged hematopoietic stem cells (HSCs) from treated mice is sufficient to extend the healthspan and lifespan of aged immunocompromised mice without additional treatment. In detail, we show that systemic CASIN treatment improves strength and endurance of aged mice by increasing the myogenic regenerative potential of aged skeletal muscle stem cells. Further, we show that CASIN modifies niche localization and H4K16ac polarity of HSCs in vivo. Single-cell profiling reveals changes in HSC transcriptome, which underlie enhanced lymphoid and regenerative capacity in serial transplantation assays. Overall, we provide proof-of-concept evidence that a short systemic treatment to decrease Cdc42 activity improves the regenerative capacity of different endogenous aged stem cells in vivo, and that rejuvenated HSCs exert a broad systemic effect sufficient to extend murine health- and lifespan.
Collapse
Affiliation(s)
- Sara Montserrat-Vazquez
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | - Noelle J. Ali
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Francesca Matteini
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Lozano
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | - Tu Zhaowei
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Eva Mejia-Ramirez
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain ,grid.512890.7Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Gina Marka
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Angelika Vollmer
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Karin Soller
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Mehmet Sacma
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Vadim Sakk
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Loris Mularoni
- grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | | | - Mireya Plass
- grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain ,grid.512890.7Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain ,grid.417656.7Gene Regulation of Cell Identity Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Yi Zheng
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Hartmut Geiger
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - M. Carolina Florian
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain ,grid.512890.7Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
4
|
Puri PL. A post-middle-age crisis for CD47 and THBS1 that turns into a vicious cycle. Cell Stem Cell 2022; 29:1613-1615. [PMID: 36459961 DOI: 10.1016/j.stem.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this issue of Cell Stem Cell, Porpiglia et al.1 report on alterations in CD47 and THBS1 expression and function in aged muscle stem cells that disrupt their regeneration capacity. Targeting THBS1-CD47 cross-signaling is sufficient to reverse sarcopenia and restore muscle mass and function in aged mice.
Collapse
Affiliation(s)
- Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Hong X, Isern J, Campanario S, Perdiguero E, Ramírez-Pardo I, Segalés J, Hernansanz-Agustín P, Curtabbi A, Deryagin O, Pollán A, González-Reyes JA, Villalba JM, Sandri M, Serrano AL, Enríquez JA, Muñoz-Cánoves P. Mitochondrial dynamics maintain muscle stem cell regenerative competence throughout adult life by regulating metabolism and mitophagy. Cell Stem Cell 2022; 29:1298-1314.e10. [PMID: 35998641 DOI: 10.1016/j.stem.2022.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 11/03/2022]
Abstract
Skeletal muscle regeneration depends on the correct expansion of resident quiescent stem cells (satellite cells), a process that becomes less efficient with aging. Here, we show that mitochondrial dynamics are essential for the successful regenerative capacity of satellite cells. The loss of mitochondrial fission in satellite cells-due to aging or genetic impairment-deregulates the mitochondrial electron transport chain (ETC), leading to inefficient oxidative phosphorylation (OXPHOS) metabolism and mitophagy and increased oxidative stress. This state results in muscle regenerative failure, which is caused by the reduced proliferation and functional loss of satellite cells. Regenerative functions can be restored in fission-impaired or aged satellite cells by the re-establishment of mitochondrial dynamics (by activating fission or preventing fusion), OXPHOS, or mitophagy. Thus, mitochondrial shape and physical networking controls stem cell regenerative functions by regulating metabolism and proteostasis. As mitochondrial fission occurs less frequently in the satellite cells in older humans, our findings have implications for regeneration therapies in sarcopenia.
Collapse
Affiliation(s)
- Xiaotong Hong
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Joan Isern
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Silvia Campanario
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNED, 08003 Barcelona, Spain
| | - Eusebio Perdiguero
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNED, 08003 Barcelona, Spain
| | - Ignacio Ramírez-Pardo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNED, 08003 Barcelona, Spain
| | - Jessica Segalés
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNED, 08003 Barcelona, Spain
| | | | - Andrea Curtabbi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Oleg Deryagin
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNED, 08003 Barcelona, Spain
| | - Angela Pollán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, 14014 Córdoba, Spain
| | - José M Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35100 Padova, Italy
| | - Antonio L Serrano
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNED, 08003 Barcelona, Spain
| | - José A Enríquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; CIBERFES, Madrid, Spain.
| | - Pura Muñoz-Cánoves
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNED, 08003 Barcelona, Spain; ICREA, 08003 Barcelona, Spain; Altos Labs, San Diego, CA, USA.
| |
Collapse
|
6
|
Loreti M, Sacco A. The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. NPJ Regen Med 2022; 7:16. [PMID: 35177651 PMCID: PMC8854427 DOI: 10.1038/s41536-022-00204-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle requires a highly orchestrated coordination between multiple cell types and their microenvironment to exert its function and to maintain its homeostasis and regenerative capacity. Over the past decades, significant advances, including lineage tracing and single-cell RNA sequencing, have contributed to identifying multiple muscle resident cell populations participating in muscle maintenance and repair. Among these populations, muscle stem cells (MuSC), also known as satellite cells, in response to stress or injury, are able to proliferate, fuse, and form new myofibers to repair the damaged tissue. These cells reside adjacent to the myofiber and are surrounded by a specific and complex microenvironment, the stem cell niche. Major components of the niche are extracellular matrix (ECM) proteins, able to instruct MuSC behavior. However, during aging and muscle-associated diseases, muscle progressively loses its regenerative ability, in part due to a dysregulation of ECM components. This review provides an overview of the composition and importance of the MuSC microenvironment. We discuss relevant ECM proteins and how their mutations or dysregulation impact young and aged muscle tissue or contribute to diseases. Recent discoveries have improved our knowledge about the ECM composition of skeletal muscle, which has helped to mimic the architecture of the stem cell niche and improved the regenerative capacity of MuSC. Further understanding about extrinsic signals from the microenvironment controlling MuSC function and innovative technologies are still required to develop new therapies to improve muscle repair.
Collapse
Affiliation(s)
- Mafalda Loreti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
7
|
Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol 2021; 23:204-226. [PMID: 34663964 DOI: 10.1038/s41580-021-00421-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Skeletal muscle contains a designated population of adult stem cells, called satellite cells, which are generally quiescent. In homeostasis, satellite cells proliferate only sporadically and usually by asymmetric cell division to replace myofibres damaged by daily activity and maintain the stem cell pool. However, satellite cells can also be robustly activated upon tissue injury, after which they undergo symmetric divisions to generate new stem cells and numerous proliferating myoblasts that later differentiate to muscle cells (myocytes) to rebuild the muscle fibre, thereby supporting skeletal muscle regeneration. Recent discoveries show that satellite cells have a great degree of population heterogeneity, and that their cell fate choices during the regeneration process are dictated by both intrinsic and extrinsic mechanisms. Extrinsic cues come largely from communication with the numerous distinct stromal cell types in their niche, creating a dynamically interactive microenvironment. This Review discusses the role and regulation of satellite cells in skeletal muscle homeostasis and regeneration. In particular, we highlight the cell-intrinsic control of quiescence versus activation, the importance of satellite cell-niche communication, and deregulation of these mechanisms associated with ageing. The increasing understanding of how satellite cells are regulated will help to advance muscle regeneration and rejuvenation therapies.
Collapse
|