1
|
Antonijevic M, Dallemagne P, Rochais C. Indirect influence on the BDNF/TrkB receptor signaling pathway via GPCRs, an emerging strategy in the treatment of neurodegenerative disorders. Med Res Rev 2024. [PMID: 39180386 DOI: 10.1002/med.22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2022] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Neuronal survival depends on neurotrophins and their receptors. There are two types of neurotrophin receptors: a nonenzymatic, trans-membrane protein of the tumor necrosis factor receptor (TNFR) family-p75 receptor and the tyrosine kinase receptors (TrkR) A, B, and C. Activation of the TrkBR by brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5) promotes neuronal survival, differentiation, and synaptic function. It is shown that in the pathogenesis of several neurodegenerative conditions (Alzheimer's disease, Parkinson's disease, Huntington's disease) the BDNF/TrkBR signaling pathway is impaired. Since it is known that GPCRs and TrkR are regulating several cell functions by interacting with each other and generating a cross-communication in this review we have focused on the interaction between different GPCRs and their ligands on BDNF/TrkBR signaling pathway.
Collapse
|
2
|
Borroto-Escuela DO, Gonzalez-Cristo E, Ochoa-Torres V, Serra-Rojas EM, Ambrogini P, Arroyo-García LE, Fuxe K. Understanding electrical and chemical transmission in the brain. Front Cell Neurosci 2024; 18:1398862. [PMID: 38988663 PMCID: PMC11233782 DOI: 10.3389/fncel.2024.1398862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
The histochemical Falck-Hillarp method for the localization of dopamine (DA), noradrenaline (NA) and serotonin in the central nervous system (CNS) of rodents was introduced in the 1960s. It supported the existence of chemical neurotransmission in the CNS. The monoamine neurons in the lower brain stem formed monosynaptic ascending systems to the telencephalon and diencephalon and monoamine descending systems to the entire spinal cord. The monoamines were early on suggested to operate via synaptic chemical transmission in the CNS. This chemical transmission reduced the impact of electrical transmission. In 1969 and the 1970s indications were obtained that important modes of chemical monoamine communication in the CNS also took place through the extra-synaptic fluid, the extracellular fluid, and long-distance communication in the cerebrospinal fluid involving diffusion and flow of transmitters like DA, NA and serotonin. In 1986, this type of transmission was named volume transmission (VT) by Agnati and Fuxe and their colleagues, also characterized by transmitter varicosity and receptor mismatches. The short and long-distance VT pathways were characterized by volume fraction, tortuosity and clearance. Electrical transmission also exists in the mammalian CNS, but chemical transmission is in dominance. One electrical mode is represented by electrical synapses formed by gap junctions which represent low resistant passages between nerve cells. It allows for a more rapid passage of action potentials between nerve cells compared to chemical transmission. The second mode is based on the ability of synaptic currents to generate electrical fields to modulate chemical transmission. One aim is to understand how chemical transmission can be integrated with electrical transmission and how putative (aquaporin water channel, dopamine D2R and adenosine A2AR) complexes in astrocytes can significancy participate in the clearance of waste products from the glymphatic system. VT may also help accomplish the operation of the acupuncture meridians essential for Chinese medicine in view of the indicated existence of extracellular VT pathways.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Emmanuell Gonzalez-Cristo
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Verty Ochoa-Torres
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
- Faculty of Engineering and Biotechnology, University OTR and the Regional Cooperative for Comprehensive Medical Assistance (CRAMI), Montevideo, Uruguay
| | - Emilio M. Serra-Rojas
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
- Cardiology Service, Lozano Blesa University Clinical Hospital, Zaragoza, Spain
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, Università di Urbino Carlo Bo, Urbino, Italy
| | - Luis E. Arroyo-García
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Mirchandani-Duque M, Choucri M, Hernández-Mondragón JC, Crespo-Ramírez M, Pérez-Olives C, Ferraro L, Franco R, Pérez de la Mora M, Fuxe K, Borroto-Escuela DO. Membrane Heteroreceptor Complexes as Second-Order Protein Modulators: A Novel Integrative Mechanism through Allosteric Receptor-Receptor Interactions. MEMBRANES 2024; 14:96. [PMID: 38786931 PMCID: PMC11122807 DOI: 10.3390/membranes14050096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Bioluminescence and fluorescence resonance energy transfer (BRET and FRET) together with the proximity ligation method revealed the existence of G-protein-coupled receptors, Ionotropic and Receptor tyrosine kinase heterocomplexes, e.g., A2AR-D2R, GABAA-D5R, and FGFR1-5-HT1AR heterocomplexes. Molecular integration takes place through allosteric receptor-receptor interactions in heteroreceptor complexes of synaptic and extra-synaptic regions. It involves the modulation of receptor protomer recognition, signaling and trafficking, as well as the modulation of behavioral responses. Allosteric receptor-receptor interactions in hetero-complexes give rise to concepts like meta-modulation and protein modulation. The introduction of receptor-receptor interactions was the origin of the concept of meta-modulation provided by Katz and Edwards in 1999, which stood for the fine-tuning or modulation of nerve cell transmission. In 2000-2010, Ribeiro and Sebastiao, based on a series of papers, provided strong support for their view that adenosine can meta-modulate (fine-tune) synaptic transmission through adenosine receptors. However, another term should also be considered: protein modulation, which is the key feature of allosteric receptor-receptor interactions leading to learning and consolidation by novel adapter proteins to memory. Finally, it must be underlined that allosteric receptor-receptor interactions and their involvement both in brain disease and its treatment are of high interest. Their pathophysiological relevance has been obtained, especially for major depressive disorder, cocaine use disorder, and Parkinson's disease.
Collapse
Affiliation(s)
- Marina Mirchandani-Duque
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, 29010 Málaga, Spain;
| | - Malak Choucri
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| | - Juan C. Hernández-Mondragón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Minerva Crespo-Ramírez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Catalina Pérez-Olives
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08007 Barcelona, Spain;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products University of Ferrara, 44121 Ferrara, Italy; (L.F.); (R.F.)
| | - Rafael Franco
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products University of Ferrara, 44121 Ferrara, Italy; (L.F.); (R.F.)
| | - Miguel Pérez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| | - Dasiel O. Borroto-Escuela
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, 29010 Málaga, Spain;
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| |
Collapse
|
4
|
Arčan IŠ, Kouter K, Zupanc T, Paska AV. Epigenetics and suicide: investigating altered H3K14ac unveiled differential expression in ADORA2A, B4GALT2 and MMP14. Epigenomics 2024; 16:701-714. [PMID: 38545853 PMCID: PMC11318710 DOI: 10.2217/epi-2023-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Background: Environmental factors make an important contribution to suicide. Histone tails are prone to different modifications, leading to changes of chromatin (de)condensation and consequently gene expression. Materials & methods: Level of H3K14ac was studied with chromatin immunoprecipitation followed by high-throughput DNA sequencing. Genes were further validated with RT-qPCR; using hippocampal tissue. Results: We showed lowered H3K14ac levels in individuals who died by suicide. The genes ADORA2A, B4GALT2 and MMP14 showed differential expression in individuals who died by suicide. Identified genetic and protein interactions among genes show interactions with suicide-related genes. Conclusion: Further investigations of histone modifications in association with DNA methylation and miRNA are needed to expand our knowledge of the genes that could significantly contribute to suicide.
Collapse
Affiliation(s)
- Iris Šalamon Arčan
- Institute of Biochemistry & Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Kouter
- Institute of Biochemistry & Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Microbiology & Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Zupanc
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alja Videtič Paska
- Institute of Biochemistry & Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Deng C, Chen H. Brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling in spinal muscular atrophy and amyotrophic lateral sclerosis. Neurobiol Dis 2024; 190:106377. [PMID: 38092270 DOI: 10.1016/j.nbd.2023.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Tropomyosin receptor kinase B (TrkB) and its primary ligand brain-derived neurotrophic factor (BDNF) are expressed in the neuromuscular system, where they affect neuronal survival, differentiation, and functions. Changes in BDNF levels and full-length TrkB (TrkB-FL) signaling have been revealed in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), two common forms of motor neuron diseases that are characterized by defective neuromuscular junctions in early disease stages and subsequently progressive muscle weakness. This review summarizes the current understanding of BDNF/TrkB-FL-related research in SMA and ALS, with an emphasis on their alterations in the neuromuscular system and possible BDNF/TrkB-FL-targeting therapeutic strategies. The limitations of current studies and future directions are also discussed, giving the hope of discovering novel and effective treatments.
Collapse
Affiliation(s)
- Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Di Palma M, Catalano M, Serpe C, De Luca M, Monaco L, Kunzelmann K, Limatola C, Conti F, Fattorini G. Lipopolysaccharide augments microglial GABA uptake by increasing GABA transporter-1 trafficking and bestrophin-1 expression. Glia 2023; 71:2527-2540. [PMID: 37431178 DOI: 10.1002/glia.24437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Gamma-aminobutyric acid (GABA), the principal inhibitory neurotransmitter in the brain, affects numerous immune cell functions. Microglia, the brain's resident innate immune cells, regulate GABA signaling through GABA receptors and express the complete GABAergic machinery for GABA synthesis, uptake, and release. Here, the use of primary microglial cell cultures and ex vivo brain tissue sections allowed for demonstrating that treatment with lipopolysaccharide (LPS) increased microglial GABA uptake as well as GABA transporter (GAT)-1 trafficking. This effect was not entirely abolished by treatment with GAT inhibitors (GAT-Is). Notably, LPS also induced microglial upregulation of bestrophin-1 (BEST-1), a Ca2+ -activated Cl- channel permeable to GABA. Combined administration of GAT-Is and a BEST-1 inhibitor completely abolished LPS-induced microglial GABA uptake. Interestingly, increased microglial GAT-1 membrane turnover via syntaxin 1A was detected in LPS-treated cultures after BEST-1 blockade. Altogether, these findings provided evidence for a novel mechanism through which LPS may trigger the inflammatory response by directly altering microglial GABA clearance and identified the GAT-1/BEST-1 interplay as a potential novel mechanism involved in brain inflammation.
Collapse
Affiliation(s)
- Michael Di Palma
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Carmela Serpe
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Mariassunta De Luca
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
- Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
- Fondazione di Medicina Molecolare, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgia Fattorini
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
- Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| |
Collapse
|
7
|
Serotonin Receptor 5-HT2A Regulates TrkB Receptor Function in Heteroreceptor Complexes. Cells 2022; 11:cells11152384. [PMID: 35954229 PMCID: PMC9368268 DOI: 10.3390/cells11152384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Serotonin receptor 5-HT2A and tropomyosin receptor kinase B (TrkB) strongly contribute to neuroplasticity regulation and are implicated in numerous neuronal disorders. Here, we demonstrate a physical interaction between 5-HT2A and TrkB in vitro and in vivo using co-immunoprecipitation and biophysical and biochemical approaches. Heterodimerization decreased TrkB autophosphorylation, preventing its activation with agonist 7,8-DHF, even with low 5-HT2A receptor expression. A blockade of 5-HT2A receptor with the preferential antagonist ketanserin prevented the receptor-mediated downregulation of TrkB phosphorylation without restoring the TrkB response to its agonist 7,8-DHF in vitro. In adult mice, intraperitoneal ketanserin injection increased basal TrkB phosphorylation in the frontal cortex and hippocampus, which is in accordance with our findings demonstrating the prevalence of 5-HT2A–TrkB heteroreceptor complexes in these brain regions. An expression analysis revealed strong developmental regulation of 5-HT2A and TrkB expressions in the cortex, hippocampus, and especially the striatum, demonstrating that the balance between TrkB and 5-HT2A may shift in certain brain regions during postnatal development. Our data reveal the functional role of 5-HT2A–TrkB receptor heterodimerization and suggest that the regulated expression of 5-HT2A and TrkB is a molecular mechanism for the brain-region-specific modulation of TrkB functions during development and under pathophysiological conditions.
Collapse
|
8
|
Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. Cells 2022; 11:cells11111826. [PMID: 35681521 PMCID: PMC9180493 DOI: 10.3390/cells11111826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders.
Collapse
|
9
|
Serotonin Heteroreceptor Complexes and Their Integration of Signals in Neurons and Astroglia-Relevance for Mental Diseases. Cells 2021; 10:cells10081902. [PMID: 34440670 PMCID: PMC8392445 DOI: 10.3390/cells10081902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
The heteroreceptor complexes present a novel biological principle for signal integration. These complexes and their allosteric receptor-receptor interactions are bidirectional and novel targets for treatment of CNS diseases including mental diseases. The existence of D2R-5-HT2AR heterocomplexes can help explain the anti-schizophrenic effects of atypical antipsychotic drugs not only based on blockade of 5-HT2AR and of D2R in higher doses but also based on blocking the allosteric enhancement of D2R protomer signaling by 5-HT2AR protomer activation. This research opens a new understanding of the integration of DA and 5-HT signals released from DA and 5-HT nerve terminal networks. The biological principle of forming 5-HT and other heteroreceptor complexes in the brain also help understand the mechanism of action for especially the 5-HT hallucinogens, including putative positive effects of e.g., psilocybin and the indicated prosocial and anti-stress actions of MDMA (ecstasy). The GalR1-GalR2 heterodimer and the putative GalR1-GalR2-5-HT1 heteroreceptor complexes are targets for Galanin N-terminal fragment Gal (1-15), a major modulator of emotional networks in models of mental disease. GPCR-receptor tyrosine kinase (RTK) heteroreceptor complexes can operate through transactivation of FGFR1 via allosteric mechanisms and indirect interactions over GPCR intracellular pathways involving protein kinase Src which produces tyrosine phosphorylation of the RTK. The exciting discovery was made that several antidepressant drugs such as TCAs and SSRIs as well as the fast-acting antidepressant drug ketamine can directly bind to the TrkB receptor and provide a novel mechanism for their antidepressant actions. Understanding the role of astrocytes and their allosteric receptor-receptor interactions in modulating forebrain glutamate synapses with impact on dorsal raphe-forebrain serotonin neurons is also of high relevance for research on major depressive disorder.
Collapse
|
10
|
Stocco E, Barbon S, Tortorella C, Macchi V, De Caro R, Porzionato A. Growth Factors in the Carotid Body-An Update. Int J Mol Sci 2020; 21:ijms21197267. [PMID: 33019660 PMCID: PMC7594035 DOI: 10.3390/ijms21197267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
The carotid body may undergo plasticity changes during development/ageing and in response to environmental (hypoxia and hyperoxia), metabolic, and inflammatory stimuli. The different cell types of the carotid body express a wide series of growth factors and corresponding receptors, which play a role in the modulation of carotid body function and plasticity. In particular, type I cells express nerve growth factor, brain-derived neurotrophic factor, neurotrophin 3, glial cell line-derived neurotrophic factor, ciliary neurotrophic factor, insulin-like-growth factor-I and -II, basic fibroblast growth factor, epidermal growth factor, transforming growth factor-α and -β, interleukin-1β and -6, tumor necrosis factor-α, vascular endothelial growth factor, and endothelin-1. Many specific growth factor receptors have been identified in type I cells, indicating autocrine/paracrine effects. Type II cells may also produce growth factors and express corresponding receptors. Future research will have to consider growth factors in further experimental models of cardiovascular, metabolic, and inflammatory diseases and in human (normal and pathologic) samples. From a methodological point of view, microarray and/or proteomic approaches would permit contemporary analyses of large groups of growth factors. The eventual identification of physical interactions between receptors of different growth factors and/or neuromodulators could also add insights regarding functional interactions between different trophic mechanisms.
Collapse
|