1
|
Li D, Yu Q, Wu R, Tuo Z, Zhu W, Wang J, Shao F, Ye L, Ye X, Yoo KH, Ke M, Yang Y, Wei W, Feng D. Chronobiology of the Tumor Microenvironment: Implications for Therapeutic Strategies and Circadian-Based Interventions. Aging Dis 2024:AD.2024.0327. [PMID: 38607733 DOI: 10.14336/ad.2024.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Numerous research works have emphasized the critical role that circadian rhythm plays in the tumor microenvironment (TME). The goal of clarifying chrono-pharmacological strategies for improving cancer treatment in clinical settings is a continuous endeavor. Consequently, to enhance the use of time-based pharmaceutical therapies in oncology, combining existing knowledge on circadian rhythms' roles within the TME is essential. This perspective elucidates the functions of circadian rhythms in the TME across various stages of cancer development, progression, and metastasis. Specifically, aging, angiogenesis, and inflammation are implicated in modulating circadian rhythm within the TME. Furthermore, circadian rhythm exerts a profound influence on current cancer treatments and thereby generates chronotheray to manage tumors. From a TME perspective, circadian rhythm offers promising opportunities for cancer prevention and treatment; nevertheless, further study is needed to address unanswered scientific problems.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxin Yu
- Department of pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xing Ye
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Korea
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK
| |
Collapse
|
2
|
Hibberd TJ, Ramsay S, Spencer-Merris P, Dinning PG, Zagorodnyuk VP, Spencer NJ. Circadian rhythms in colonic function. Front Physiol 2023; 14:1239278. [PMID: 37711458 PMCID: PMC10498548 DOI: 10.3389/fphys.2023.1239278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
A rhythmic expression of clock genes occurs within the cells of multiple organs and tissues throughout the body, termed "peripheral clocks." Peripheral clocks are subject to entrainment by a multitude of factors, many of which are directly or indirectly controlled by the light-entrainable clock located in the suprachiasmatic nucleus of the hypothalamus. Peripheral clocks occur in the gastrointestinal tract, notably the epithelia whose functions include regulation of absorption, permeability, and secretion of hormones; and in the myenteric plexus, which is the intrinsic neural network principally responsible for the coordination of muscular activity in the gut. This review focuses on the physiological circadian variation of major colonic functions and their entraining mechanisms, including colonic motility, absorption, hormone secretion, permeability, and pain signalling. Pathophysiological states such as irritable bowel syndrome and ulcerative colitis and their interactions with circadian rhythmicity are also described. Finally, the classic circadian hormone melatonin is discussed, which is expressed in the gut in greater quantities than the pineal gland, and whose exogenous use has been of therapeutic interest in treating colonic pathophysiological states, including those exacerbated by chronic circadian disruption.
Collapse
Affiliation(s)
- Timothy J. Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Stewart Ramsay
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Phil G. Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | | | - Nick J. Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
3
|
Circadian clock and cell cycle: Cancer and chronotherapy. Acta Histochem 2021; 123:151816. [PMID: 34800857 DOI: 10.1016/j.acthis.2021.151816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
The circadian clock is an endogenous timing system that ensures that various physiological processes have nearly 24 h circadian rhythms, including cell metabolism, division, apoptosis, and tumor production. In addition, results from animal models and molecular studies underscore emerging links between the cell cycle and the circadian clock. Mutations in the core genes of the circadian clock' can disrupt the cell cycle, which in turn increases the possibility of tumors. At present, tumor chronotherapy, which relies on a circadian clock mechanism, is developing rapidly for optimizing the time of drug administration in tumor treatment to improve drug efficacy and safety. However, the relationship between the circadian clock and the cell cycle is extremely complicated. This review summarizes the possible connection between the circadian clock and the cell cycle. In addition, the review provides evidence of the influence of the circadian clock on senescence and cancer.
Collapse
|