1
|
Pundlik SS, Barik A, Venkateshvaran A, Sahoo SS, Jaysingh MA, Math RGH, Lal H, Hashmi MA, Ramanathan A. Senescent cells inhibit mouse myoblast differentiation via the SASP-lipid 15d-PGJ 2 mediated modification and control of HRas. eLife 2024; 13:RP95229. [PMID: 39196610 PMCID: PMC11357351 DOI: 10.7554/elife.95229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Senescent cells are characterized by multiple features such as increased expression of senescence-associated β-galactosidase activity (SA β-gal) and cell cycle inhibitors such as p21 or p16. They accumulate with tissue damage and dysregulate tissue homeostasis. In the context of skeletal muscle, it is known that agents used for chemotherapy such as Doxorubicin (Doxo) cause buildup of senescent cells, leading to the inhibition of tissue regeneration. Senescent cells influence the neighboring cells via numerous secreted factors which form the senescence-associated secreted phenotype (SASP). Lipids are emerging as a key component of SASP that can control tissue homeostasis. Arachidonic acid-derived lipids have been shown to accumulate within senescent cells, specifically 15d-PGJ2, which is an electrophilic lipid produced by the non-enzymatic dehydration of the prostaglandin PGD2. This study shows that 15d-PGJ2 is also released by Doxo-induced senescent cells as an SASP factor. Treatment of skeletal muscle myoblasts with the conditioned medium from these senescent cells inhibits myoblast fusion during differentiation. Inhibition of L-PTGDS, the enzyme that synthesizes PGD2, diminishes the release of 15d-PGJ2 by senescent cells and restores muscle differentiation. We further show that this lipid post-translationally modifies Cys184 of HRas in C2C12 mouse skeletal myoblasts, causing a reduction in the localization of HRas to the Golgi, increased HRas binding to Ras Binding Domain (RBD) of RAF Kinase (RAF-RBD), and activation of cellular Mitogen Activated Protein (MAP) kinase-Extracellular Signal Regulated Kinase (Erk) signaling (but not the Akt signaling). Mutating C184 of HRas prevents the ability of 15d-PGJ2 to inhibit the differentiation of muscle cells and control the activity of HRas. This work shows that 15d-PGJ2 released from senescent cells could be targeted to restore muscle homeostasis after chemotherapy.
Collapse
Affiliation(s)
- Swarang Sachin Pundlik
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
- Manipal Academy of Higher Education (MAHE)ManipalIndia
| | - Alok Barik
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
| | - Ashwin Venkateshvaran
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
| | - Snehasudha Subhadarshini Sahoo
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
- University of North Carolina at Chapel HillChapel HillUnited States
| | - Mahapatra Anshuman Jaysingh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K)MohanpurIndia
- Division of Biology and Biomedical Sciences, Washington University in St LouisSt LouisUnited States
| | | | - Heera Lal
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
- Manipal Academy of Higher Education (MAHE)ManipalIndia
| | - Maroof Athar Hashmi
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
- Manipal Academy of Higher Education (MAHE)ManipalIndia
| | - Arvind Ramanathan
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
| |
Collapse
|
2
|
Tsuburaya-Suzuki R, Ohori S, Hamanaka K, Fujita A, Matsumoto N, Kinoshita M. Long-term clinical course of adult-onset refractory epilepsy in cardiofaciocutaneous syndrome with a pathogenic MAP2K1 variant: a case report. Front Genet 2024; 15:1410979. [PMID: 39086472 PMCID: PMC11288845 DOI: 10.3389/fgene.2024.1410979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Cardiofaciocutaneous syndrome (CFC) is a rare genetic disorder that presents with cardiac, craniofacial, and cutaneous symptoms, and is often accompanied by neurological abnormalities, including neurodevelopmental disorders and epilepsy. Regarding epilepsy in CFC, the onset of seizures commonly occurs in childhood. Since research data has mainly been collected from young patients with relatively short observation period, there is insufficient information regarding adult-onset epilepsy in CFC. Here, we report the long-term clinical course of epilepsy and other complications in a 45-year-old female with genetically confirmed CFC carrying a pathogenic de novo heterozygous variant of MAP2K1, c.389 A>G (p.Tyr130Cys). The patient presented psychomotor delay from infancy and had severe intellectual disability with autistic features. At the age of 30, she first developed combined generalized and focal epilepsy that was resistant to anti-seizure medication. Her refractory epilepsy was fairly controlled with a combination of three anti-seizure medications, especially lacosamide, which effectively suppressed both generalized and focal seizures. The present case provides detailed information regarding the clinical course and treatment of adult-onset epilepsy, which may be useful for optimal treatment and prognostic prediction of CFC.
Collapse
Affiliation(s)
- Rie Tsuburaya-Suzuki
- Department of Pediatric Neurology, National Hospital Organization Utano National Hospital, Kyoto, Japan
- Department of Pediatrics, St. Joseph Medical and Welfare Center for Children, Kyoto, Japan
| | - Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto, Japan
| |
Collapse
|
3
|
Nussinov R, Zhang W, Liu Y, Jang H. Mitogen signaling strength and duration can control cell cycle decisions. SCIENCE ADVANCES 2024; 10:eadm9211. [PMID: 38968359 DOI: 10.1126/sciadv.adm9211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
Decades ago, mitogen-promoted signaling duration and strength were observed to be sensed by the cell and to be critical for its decisions: to proliferate or differentiate. Landmark publications established the importance of mitogen signaling not only in the G1 cell cycle phase but also through the S and the G2/M transition. Despite these early milestones, how mitogen signal duration and strength, short and strong or weaker and sustained, control cell fate has been largely unheeded. Here, we center on cardinal signaling-related questions, including (i) how fluctuating mitogenic signals are converted into cell proliferation-differentiation decisions and (ii) why extended duration of weak signaling is associated with differentiation, while bursts of strong and short induce proliferation but, if too strong and long, induce irreversible senescence. Our innovative broad outlook harnesses cell biology and protein conformational ensembles, helping us to define signaling strength, clarify cell cycle decisions, and thus cell fate.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
4
|
Padhiyar J, Mahajan R, Panda M. RASopathies: Evolving Concepts in Pathogenetics, Clinical Features, and Management. Indian Dermatol Online J 2024; 15:392-404. [PMID: 38845651 PMCID: PMC11152490 DOI: 10.4103/idoj.idoj_594_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 06/09/2024] Open
Abstract
RASopathies refers to the group of disorders which are caused by a mutation in various genes of the RAS/MAPK (RAT sarcoma virus/Mitogen activated protein kinase) pathway. It includes many genes with varied functions, which are responsible for cell cycle regulation. As the mutation in one gene affects the entire pathway, there are many overlapping features among the various syndromes which are included under an umbrella term "RASopathies." However, neuroectodermal involvement is a unifying feature among these syndromes, which are caused by germline mutations affecting genes along this pathway. Recently, many other RASopathies have been described to involve blood vessels, lymphatics, and immune system. Also, many cutaneous mosaic disorders have been found to have mutations in the concerned pathway. The purpose of this article is to briefly review the pathogenesis of RASopathies with cutaneous manifestations, and summarise the features that can be helpful as diagnostic clues to dermatologists. As we understand more about the pathogenesis of the pathway at the cellular level, the research on genotype-phenotype correlation and therapeutic options broadens. Targeted therapy is in the clinical and preclinical trial phase, which may brighten the future of many patients.
Collapse
Affiliation(s)
- Jigna Padhiyar
- Department of DVL, Gujarat Cancer Society Medical College, Hospital and Research Centre, Ahmedabad, Gujarat, India
| | - Rahul Mahajan
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Maitreyee Panda
- Department of Dermatology, IMS and SUM Hospital, Bhubaneshwar, Odisha, India
| |
Collapse
|
5
|
Yavuz BR, Arici MK, Demirel HC, Tsai CJ, Jang H, Nussinov R, Tuncbag N. Neurodevelopmental disorders and cancer networks share pathways, but differ in mechanisms, signaling strength, and outcome. NPJ Genom Med 2023; 8:37. [PMID: 37925498 PMCID: PMC10625621 DOI: 10.1038/s41525-023-00377-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023] Open
Abstract
Epidemiological studies suggest that individuals with neurodevelopmental disorders (NDDs) are more prone to develop certain types of cancer. Notably, however, the case statistics can be impacted by late discovery of cancer in individuals afflicted with NDDs, such as intellectual disorders, autism, and schizophrenia, which may bias the numbers. As to NDD-associated mutations, in most cases, they are germline while cancer mutations are sporadic, emerging during life. However, somatic mosaicism can spur NDDs, and cancer-related mutations can be germline. NDDs and cancer share proteins, pathways, and mutations. Here we ask (i) exactly which features they share, and (ii) how, despite their commonalities, they differ in clinical outcomes. To tackle these questions, we employed a statistical framework followed by network analysis. Our thorough exploration of the mutations, reconstructed disease-specific networks, pathways, and transcriptome levels and profiles of autism spectrum disorder (ASD) and cancers, point to signaling strength as the key factor: strong signaling promotes cell proliferation in cancer, and weaker (moderate) signaling impacts differentiation in ASD. Thus, we suggest that signaling strength, not activating mutations, can decide clinical outcome.
Collapse
Affiliation(s)
- Bengi Ruken Yavuz
- Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - M Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
| | - Habibe Cansu Demirel
- Graduate School of Sciences and Engineering, Koc University, Istanbul, 34450, Turkey
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Nurcan Tuncbag
- Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul, Turkey.
- School of Medicine, Koc University, Istanbul, 34450, Turkey.
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
| |
Collapse
|
6
|
Nussinov R, Yavuz BR, Arici MK, Demirel HC, Zhang M, Liu Y, Tsai CJ, Jang H, Tuncbag N. Neurodevelopmental disorders, like cancer, are connected to impaired chromatin remodelers, PI3K/mTOR, and PAK1-regulated MAPK. Biophys Rev 2023; 15:163-181. [PMID: 37124926 PMCID: PMC10133437 DOI: 10.1007/s12551-023-01054-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) and cancer share proteins, pathways, and mutations. Their clinical symptoms are different. However, individuals with NDDs have higher probabilities of eventually developing cancer. Here, we review the literature and ask how the shared features can lead to different medical conditions and why having an NDD first can increase the chances of malignancy. To explore these vital questions, we focus on dysregulated PI3K/mTOR, a major brain cell growth pathway in differentiation, and MAPK, a critical pathway in proliferation, a hallmark of cancer. Differentiation is governed by chromatin organization, making aberrant chromatin remodelers highly likely agents in NDDs. Dysregulated chromatin organization and accessibility influence the lineage of specific cell brain types at specific embryonic development stages. PAK1, with pivotal roles in brain development and in cancer, also regulates MAPK. We review, clarify, and connect dysregulated pathways with dysregulated proliferation and differentiation in cancer and NDDs and highlight PAK1 role in brain development and MAPK regulation. Exactly how PAK1 activation controls brain development, and why specific chromatin remodeler components, e.g., BAF170 encoded by SMARCC2 in autism, await clarification.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Bengi Ruken Yavuz
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - M Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Habibe Cansu Demirel
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, 34450 Istanbul, Turkey
- School of Medicine, Koc University, 34450 Istanbul, Turkey
| |
Collapse
|
7
|
Nussinov R, Tsai CJ, Jang H. A New View of Activating Mutations in Cancer. Cancer Res 2022; 82:4114-4123. [PMID: 36069825 PMCID: PMC9664134 DOI: 10.1158/0008-5472.can-22-2125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
A vast effort has been invested in the identification of driver mutations of cancer. However, recent studies and observations call into question whether the activating mutations or the signal strength are the major determinant of tumor development. The data argue that signal strength determines cell fate, not the mutation that initiated it. In addition to activating mutations, factors that can impact signaling strength include (i) homeostatic mechanisms that can block or enhance the signal, (ii) the types and locations of additional mutations, and (iii) the expression levels of specific isoforms of genes and regulators of proteins in the pathway. Because signal levels are largely decided by chromatin structure, they vary across cell types, states, and time windows. A strong activating mutation can be restricted by low expression, whereas a weaker mutation can be strengthened by high expression. Strong signals can be associated with cell proliferation, but too strong a signal may result in oncogene-induced senescence. Beyond cancer, moderate signal strength in embryonic neural cells may be associated with neurodevelopmental disorders, and moderate signals in aging may be associated with neurodegenerative diseases, like Alzheimer's disease. The challenge for improving patient outcomes therefore lies in determining signaling thresholds and predicting signal strength.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| |
Collapse
|
8
|
Nandi S, Chennappan S, Andrasch Y, Fidan M, Engler M, Ahmad M, Tuckermann JP, Zenker M, Cirstea IC. Increased osteoclastogenesis contributes to bone loss in the Costello syndrome Hras G12V mouse model. Front Cell Dev Biol 2022; 10:1000575. [PMID: 36330334 PMCID: PMC9624175 DOI: 10.3389/fcell.2022.1000575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
RAS GTPases are ubiquitous GDP/GTP-binding proteins that function as molecular switches in cellular signalling and control numerous signalling pathways and biological processes. Pathogenic mutations in RAS genes severely affect cellular homeostasis, leading to cancer when occurring in somatic cells and developmental disorders when the germline is affected. These disorders are generally termed as RASopathies and among them Costello syndrome (CS) is a distinctive entity that is caused by specific HRAS germline mutations. The majority of these mutations affect residues 12 and 13, the same sites as somatic oncogenic HRAS mutations. The hallmarks of the disease include congenital cardiac anomalies, impaired thriving and growth, neurocognitive impairments, distinctive craniofacial anomalies, and susceptibility to cancer. Adult patients often present signs of premature aging including reduced bone mineral density and osteoporosis. Using a CS mouse model harbouring a Hras G12V germline mutation, we aimed at determining whether this model recapitulates the patients’ bone phenotype and which bone cells are driving the phenotype when mutated. Our data revealed that Hras G12V mutation induces bone loss in mice at certain ages. In addition, we identified that bone loss correlated with an increased number of osteoclasts in vivo and Hras G12V mutations increased osteoclastogenesis in vitro. Last, but not least, mutant osteoclast differentiation was reduced by treatment in vitro with MEK and PI3K inhibitors, respectively. These results indicate that Hras is a novel regulator of bone homeostasis and an increased osteoclastogenesis due to Hras G12V mutation contributes to bone loss in the Costello syndrome.
Collapse
Affiliation(s)
- Sayantan Nandi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | | | - Yannik Andrasch
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Melanie Engler
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Mubashir Ahmad
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
- *Correspondence: Ion Cristian Cirstea,
| |
Collapse
|
9
|
Nussinov R, Tsai CJ, Jang H. How can same-gene mutations promote both cancer and developmental disorders? SCIENCE ADVANCES 2022; 8:eabm2059. [PMID: 35030014 PMCID: PMC8759737 DOI: 10.1126/sciadv.abm2059] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/22/2021] [Indexed: 05/05/2023]
Abstract
The question of how same-gene mutations can drive both cancer and neurodevelopmental disorders has been puzzling. It has also been puzzling why those with neurodevelopmental disorders have a high risk of cancer. Ras, MEK, PI3K, PTEN, and SHP2 are among the oncogenic proteins that can harbor mutations that encode diseases other than cancer. Understanding why some of their mutations can promote cancer, whereas others promote neurodevelopmental diseases, and why even the same mutations may promote both phenotypes, has important clinical ramifications. Here, we review the literature and address these tantalizing questions. We propose that cell type–specific expression of the mutant protein, and of other proteins in the respective pathway, timing of activation (during embryonic development or sporadic emergence), and the absolute number of molecules that the mutations activate, alone or in combination, are pivotal in determining the pathological phenotypes—cancer and (or) developmental disorders.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|