1
|
Mahmood NMS, Mahmud AMR, Maulood IM. Melatonin attenuates responses to angiotensin II in isolated aortic rings of STZ-induced type 1-like DM rats. Endocr Res 2024:1-13. [PMID: 39719865 DOI: 10.1080/07435800.2024.2445264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/18/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND In patients with diabetes mellitus (DM), vascular endothelial dysfunction (VED) is the main reason for impaired life expectancy. Melatonin (MEL) demonstrates wide-ranging effects across various organs and exhibits pleiotropic characteristics. The current study aims to investigate the modulatory roles of MEL vascular response to angiotensin II (Ang II) and its receptors including angiotensin type 1 receptor (AT-1 R) and angiotensin type 2 receptor (AT-2 R) in isolated thoracic aorta of non-diabetes (non-DM) and diabetes (DM) rats. METHODS The thoracic aortae were isolated in order to investigate the influence of MEL on AT-1 R, using valsartan (VAL) and MT-2Rusing luzindole (LUZ) via dose-response curve (DRC) measurement of Ang II reactivity. In addition, AT-1 R was involved in this study, under PD123319 with ADInstrument organ bath (Panlab apparatus, Harvard University, USA). RESULTS The maximum response of Ang II was increased significantly in DM condition. In addition, AT-1 R was completely blocked under VAL, while AT-2 R was upregulated in the DM group. The combination of VAL and PD123319 led to abolishing the Ang II effect dramatically as well. Melatonin alone reduced Ang II in the DM group dramatically. This effect was also observed with MEL, PD1213319, and VAL combination, as well as, with MEL, LUZ, and PD1213319 combination. CONCLUSIONS Melatonin has been demonstrated to modulate both AT-1 R and AT-2 R and has influenced the reactivity of Ang II in the aortas of diabetic rats through highly complex mechanisms.
Collapse
Affiliation(s)
- Nazar M Shareef Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Almas M R Mahmud
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ismail M Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
2
|
Mury P, Cagnone G, Dagher O, Wünnemann F, Voghel G, Beaudoin M, Lambert M, Miquel G, Noly PE, Perrault LP, Carrier M, Thorin-Trescases N, Joyal JS, Lettre G, Thorin E. Senescence and Inflamm-Aging Are Associated With Endothelial Dysfunction in Men But Not Women With Atherosclerosis. JACC Basic Transl Sci 2024; 9:1163-1177. [PMID: 39534645 PMCID: PMC11551873 DOI: 10.1016/j.jacbts.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 11/16/2024]
Abstract
Coronary artery disease (CAD) is more prevalent in men than in women, with endothelial dysfunction, prodromal to CAD, developing a decade earlier in middle-aged men. We investigated the molecular basis of this dimorphism ex vivo in arterial segments discarded during surgery of CAD patients. The results reveal a lower endothelial relaxant sensitivity in men, and a senescence-associated inflammaging transcriptomic signature in endothelial cells. In women, cellular metabolism and endothelial maintenance pathways are conserved. This suggests that senolytic therapies to reduce risk of cardiovascular events in women with CAD may not be as effective as in men.
Collapse
Affiliation(s)
- Pauline Mury
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Gael Cagnone
- University Hospital Sainte Justine Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Olina Dagher
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Florian Wünnemann
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Guillaume Voghel
- Department of Family Medicine and Emergency Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Melissa Beaudoin
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Géraldine Miquel
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Pierre-Emmanuel Noly
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Louis P. Perrault
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Michel Carrier
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | - Jean-Sébastien Joyal
- University Hospital Sainte Justine Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Department of Ophthalmology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Guillaume Lettre
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Eric Thorin
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Huang L, Liu M, Tang J, Gong Z, Li Z, Yang Y, Zhang M. The role of ALDH2 rs671 polymorphism and C-reactive protein in the phenotypes of male ALS patients. Front Neurosci 2024; 18:1397991. [PMID: 39290715 PMCID: PMC11405379 DOI: 10.3389/fnins.2024.1397991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Background The aldehyde dehydrogenase 2 (ALDH2) rs671 (A) allele has been implicated in neurodegeneration, potentially through oxidative and inflammatory pathways. The study aims to investigate the effects of the ALDH2 rs671 (A) allele and high sensitivity C-reactive protein (hs-CRP) on the clinical phenotypes of amyotrophic lateral sclerosis (ALS) in male and female patients. Methods Clinical data and ALDH2 rs671 genotype of 143 ALS patients, including 85 males and 58 females, were collected from January 2018 to December 2022. All patients underwent assessment using the Chinese version of the Edinburgh Cognitive and Behavioral ALS Screen (ECAS). Complete blood count and metabolic profiles were measured. Clinical and laboratory parameters were compared between carriers and non-carriers of the rs671 (A) allele in males and females, respectively. The significant parameters and rs671 (A) Allele were included in multivariate linear regression models to identify potential contributors to motor and cognitive impairment. Mediation analysis was employed to evaluate any mediation effects. Results Male patients carrying rs671 (A) allele exhibited higher levels of hs-CRP than non-carriers (1.70 mg/L vs. 0.50 mg/L, p = 0.006). The rs671 (A) allele was identified as an independent risk factor for faster disease progression only in male patients (β = 0.274, 95% CI = 0.048-0.499, p = 0.018). The effect of the rs671 (A) allele on the executive function in male patients was fully mediated by hs-CRP (Indirect effect = -1.790, 95% CI = -4.555--0.225). No effects of the rs671 (A) allele or hs-CRP were observed in female ALS patients. The effects of the ALDH2 rs671 (A) allele and the mediating role of hs-CRP in male patients remained significant in the sensitivity analyses. Conclusion The ALDH2 rs671 (A) allele contributed to faster disease progression and hs-CRP mediated cognitive impairment in male ALS patients.
Collapse
Affiliation(s)
- Lifang Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mao Liu
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Jiahui Tang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhenxiang Gong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Yang
- Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Taskintuna K, Bhat MA, Shaikh T, Hum J, Golestaneh N. Sex-dependent regulation of retinal pigment epithelium and retinal function by Pgc-1α. Front Cell Neurosci 2024; 18:1442079. [PMID: 39285939 PMCID: PMC11403373 DOI: 10.3389/fncel.2024.1442079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness that affects people over 60. While aging is the prominent factor in AMD, studies have reported a higher prevalence of AMD in women compared to age-matched men. Higher levels of the innate immune response's effector proteins complement factor B and factor I were also found in females compared to males in intermediate AMD. However, the mechanisms underlying these differences remain elusive. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a key regulator of mitochondrial biogenesis and metabolic pathways. Previously, we showed that Pgc-1α repression and high-fat diet induce drastic AMD-like phenotypes in mice. Our recent data revealed that Pgc-1α repression alone can also induce retinal pigment epithelium (RPE) and retinal dysfunction in mice, and its inhibition in vitro results in lipid droplet accumulation in human RPE. Whether sex is a contributing factor in these phenotypes remains to be elucidated. Using electroretinography, we demonstrate that sex could influence RPE function during aging independent of Pgc-1α in wild-type (WT) mice. We further show that Pgc-1α repression exacerbates RPE and retinal dysfunction in females compared to aged-match male mice. Gene expression analyses revealed that Pgc-1α differentially regulates genes related to antioxidant enzymes and mitochondrial dynamics in males and females. RPE flat mounts immunolabeled with TOMM20 and DRP1 indicated a sex-dependent role for Pgc-1α in regulating mitochondrial fission. Analyses of mitochondrial network morphology suggested sex-dependent effects of Pgc-1α repression on mitochondrial dynamics. Together, our study demonstrates that inhibition of Pgc-1α induces a sex-dependent decline in RPE and retinal function in mice. These observations on the sex-dependent regulation of RPE and retinal function could offer novel insights into targeted therapeutic approaches for age-related RPE and retinal degeneration.
Collapse
Affiliation(s)
- Kaan Taskintuna
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, United States
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Mohd Akbar Bhat
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, United States
| | - Tasneem Shaikh
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, United States
| | - Jacob Hum
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, United States
| | - Nady Golestaneh
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, United States
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
- Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
5
|
Viana R, Joaquim L, Lippert FW, Andrade NM, Fleith NC, Damasio C, Tiscoski A, Dos Santos D, Machado RS, Danielski LG, Mathias K, Stork S, Bernardes G, Strickert Y, Perin CH, Dietzi W, Bonfante S, Bitencourt P, Felacio L, Fortunato JJ, Petronilho F. Sepsis after middle cerebral artery occlusion exacerbates peripheral oxidative stress in a sex-specific manner. Microvasc Res 2024; 155:104711. [PMID: 38880383 DOI: 10.1016/j.mvr.2024.104711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Ischemic stroke occurs due a blockage in the blood flow to the brain, leading to damage to the nervous system. The prevalent morbidities resulting from stroke include post-stroke infection, as sepsis. Additionally, oxidative stress is recognized for inducing functional deficits in peripheral organs during sepsis. Therefore, sex differences in stroke exist and we aimed to investigate the peripheral oxidative stress caused by sepsis after stroke in male and female rats. Wistar rats (male and female) were divided into sham+sham, middle cerebral artery occlusion (MCAO) + sham, sham+ cecal ligation and perforation (CLP) and MCAO+CLP groups to males and female rats. Animals were subjected to MCAO or sham and after 7 days, were subjected to sepsis by CLP or sham. After 24 h, serum, total brain, lung, liver, heart, and spleen were collected. Brain edema, myeloperoxidase (MPO) activity, nitrite/nitrate (N/N) concentration, oxidative damage to lipids and proteins, and catalase activity were evaluated. Brain edema was observed only in male rats in MCAO+CLP group compared to MCAO+sham. Regarding MPO activity, an increase was verified in male in different organs and serum in MCAO+CLP group. For N/N levels, the increase was more pronounced in females submitted to MCAO+CLP. In general, to oxidative stress, an increase was only observed in animals exposed to MCAO+CLP, or with a greater increase in this group compared to the others. The findings provided the first indication that animals exposed to MCAO exhibit a heightened vulnerability to the harmful impacts of sepsis, as evidenced by brain edema and peripheral oxidative stress, and this susceptibility is dependent of sex.
Collapse
Affiliation(s)
- Rodrigo Viana
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Fabrício Weinheimer Lippert
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Naila Maciel Andrade
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Nathalia Carvalho Fleith
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Carla Damasio
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Anita Tiscoski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - David Dos Santos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Lucineia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Solange Stork
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Gabriela Bernardes
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Yasmin Strickert
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Carlos Henrique Perin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Wendel Dietzi
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Bonfante
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Pedro Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Lucas Felacio
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jucelia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
6
|
Dye JA, Nguyen HH, Stewart EJ, Schladweiler MCJ, Miller CN. Sex Differences in Impacts of Early Gestational and Peri-Adolescent Ozone Exposure on Lung Development in Rats: Implications for Later Life Disease in Humans. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1636-1663. [PMID: 39182948 DOI: 10.1016/j.ajpath.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 08/27/2024]
Abstract
Air pollution exposure during pregnancy may affect fetal growth. Fetal growth restriction (FGR) is associated with reduced lung function in children that can persist into adulthood. Using an established model of asymmetrical FGR in Long-Evans rats, this study investigated sex differences in effects of early life ozone exposure on lung development and maturation. Adverse health effects for i) gestational exposure (with impacts on primary alveolarization), ii) peri-adolescent exposure (with impacts on secondary alveolarization), and iii) cumulative exposure across both periods were evaluated. Notably, female offspring were most affected by gestational ozone exposure, likely because of impaired angiogenesis and corresponding decreases in primary alveolarization. Females had diminished lung capacity, fewer mature alveoli, and medial hypertrophy of small and large pulmonary arteries. Males, especially FGR-prone offspring, were more affected by peri-adolescent ozone exposure. Males had increased ductal areas, likely due to disrupted secondary alveolarization. Altered lung development may increase risk of developing diseases, such as pulmonary arterial hypertension or chronic obstructive pulmonary disease. Pulmonary arterial hypertension disproportionately affects women. In the United States, chronic obstructive pulmonary disease prevalence is increasing, especially in women; and prevalence for both men and women is highest in urbanized areas. This investigation underlines the importance of evaluating results separately by sex, and provides biologic plausibility for later consequences of early-life exposure to ozone, a ubiquitous urban air pollutant.
Collapse
Affiliation(s)
- Janice A Dye
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina.
| | - Helen H Nguyen
- Oak Ridge Institute for Science and Education, Research Triangle Park, North Carolina
| | - Erica J Stewart
- Oak Ridge Institute for Science and Education, Research Triangle Park, North Carolina
| | - Mette C J Schladweiler
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Colette N Miller
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
7
|
Li B, Suzuki-Kerr H, Martis RM, Lim CJJ, Wang ZA, Nguyen TX, Donaldson PJ, Poulsen RC, Lim JC. Time of day differences in the regulation of glutathione levels in the rat lens. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1407582. [PMID: 39211001 PMCID: PMC11358124 DOI: 10.3389/fopht.2024.1407582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Introduction Evidence in non-ocular tissues indicate that the antioxidant glutathione (GSH) may be regulated in a circadian manner leading to the idea that GSH levels in the lens may also be controlled in a circadian manner to anticipate periods of oxidative stress. Methods Male rat Wistar lenses (6 weeks) were collected every 4 hours over a 24-hour period at 6am, 10am, 2pm, 6pm, 10pm and 2am and quantitative-PCR, western blotting and immunohistochemistry performed to examine the expression of core clock genes and proteins (BMAL1, CLOCK, CRY1-2, PER 1-3) and their subcellular localisation over a 24-hour period. Western blotting of lenses was also performed to examine the expression of NRF2, a transcription factor involved in regulating genes involved in GSH homeostasis and GSH related enzymes (GCLC, GS and GR) over the 24-hour period. Finally, HLPC was used to measure GSH levels in the aqueous humour and lenses every 4 hours over a 24-hour period. Results The rat lens contains the core molecular components of a circadian clock with the expression of core clock proteins, NRF2 and GSH related enzymes fluctuating over a 24-hour period. BMAL1 expression was highest during the day, with BMAL1 localised to the nuclei at 10am. NRF2 expression remained constant over the 24-hour period, although appeared to move in and out of the nuclei every 4 hours. GSH related enzyme expression tended to peak at the start of night which correlated with high levels of GSH in the lens and lower levels of GSH in the aqueous humour. Conclusion The lens contains the key components of a circadian clock, and time-of-day differences exist in the expression of GSH and GSH related enzymes involved in maintaining GSH homeostasis. GSH levels in the rat lens were highest at the start of night which represents the active phase of the rat when high GSH levels may be required to counteract oxidative stress induced by cellular metabolism. Future work to directly link the clock to regulation of GSH levels in the lens will be important in determining whether the clock can be used to help restore GSH levels in the lens.
Collapse
Affiliation(s)
- Bo Li
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Haruna Suzuki-Kerr
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Renita M. Martis
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Christopher J. J. Lim
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Zhou-ai Wang
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Tai X. Nguyen
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Paul J. Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Raewyn C. Poulsen
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Julie C. Lim
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
H-Alcántara A, Kourani O, Marcos-Jiménez A, Martínez-Núñez P, Herranz-Martín E, Fuentes P, Toribio ML, Muñoz-Calleja C, Iglesias T, Campanero MR. Glutathione overproduction mediates lymphoma initiating cells survival and has a sex-dependent effect on lymphomagenesis. Cell Death Dis 2024; 15:534. [PMID: 39068166 PMCID: PMC11283572 DOI: 10.1038/s41419-024-06923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Lymphoid tumor patients often exhibit resistance to standard therapies or experience relapse post-remission. Relapse is driven by Tumor Initiating Cells (TICs), a subset of tumor cells capable of regrowing the tumor and highly resistant to therapy. Growing cells in 3D gels is a method to discern tumorigenic cells because it strongly correlates with tumorigenicity. The finding that TICs, rather than differentiated tumor cells, grow in 3D gels offers a unique opportunity to unveil TIC-specific signaling pathways and therapeutic targets common to various cancer types. Here, we show that culturing lymphoid cells in 3D gels triggers reactive oxygen species (ROS) production, leading to non-tumor lymphoid cell death while enabling the survival and proliferation of a subset of lymphoma/leukemia cells, TICs or TIC-like cells. Treatment with the antioxidant N-acetylcysteine inhibits this lethality and promotes the growth of primary non-tumor lymphoid cells in 3D gels. A subset of lymphoma cells, characterized by an increased abundance of the antioxidant glutathione, escape ROS-induced lethality, a response not seen in non-tumor cells. Reducing glutathione production in lymphoma cells, either through pharmacological inhibition of glutamate cysteine ligase (GCL), the enzyme catalyzing the rate-limiting step in glutathione biosynthesis, or via knockdown of GCLC, the GCL catalytic subunit, sharply decreased cell growth in 3D gels and xenografts. Tumor cells from B-cell lymphoma/leukemia patients and λ-MYC mice, a B-cell lymphoma mouse model, overproduce glutathione. Importantly, pharmacological GCL inhibition hindered lymphoma growth in female λ-MYC mice, suggesting that this treatment holds promise as a therapeutic strategy for female lymphoma/leukemia patients.
Collapse
Affiliation(s)
- Alberto H-Alcántara
- Cell-cell communication and inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | - Omar Kourani
- Cell-cell communication and inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | - Ana Marcos-Jiménez
- Immunology Department, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Patricia Martínez-Núñez
- Cell-cell communication and inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | - Estela Herranz-Martín
- Cell-cell communication and inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | - Patricia Fuentes
- Immune System Development and Function Unit, CBM, CSIC-UAM, Madrid, Spain
| | - María L Toribio
- Immune System Development and Function Unit, CBM, CSIC-UAM, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Department, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC) Madrid, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Teresa Iglesias
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) Madrid, Madrid, Spain
| | - Miguel R Campanero
- Cell-cell communication and inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
9
|
Vieira LG, de Noronha SISR, Chírico MTT, de Souza AB, de Matos NA, Chianca-Jr DA, Bezerra FS, de Menezes RC. The impact of high-fat diet consumption and inulin fiber supplementation on anxiety-related behaviors and liver oxidative status in female Wistar rats. Behav Brain Res 2024; 470:115048. [PMID: 38761857 DOI: 10.1016/j.bbr.2024.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Obesity is a worldwide public health problem associated with cognitive and mental health problems in both humans and rats. Studies assessing the effect of fiber supplementation on behavioral deficits and oxidative stress caused by high-fat diet (HFD) consumption in female rats are still scarce. We hypothesized that HFD consumption would lead to anxiety-related behavior and hepatic oxidative stress and that inulin would protect against these changes. We analyzed the impact of HFD-induced obesity combined with fiber supplementation (inulin) on anxiety-related defensive behavior and hepatic oxidative stress. RESULTS Female rats were fed a high-fat diet (HFD; 45%) for nine weeks to induce obesity. The administration of inulin was found to decrease the adiposity index in both the control and obese groups. The consumption of a HFD combined with inulin supplementation resulted in a reduction in both CAT activity and carbonylated protein levels, leading to a shift in the hepatic redox balance. Interestingly, the behavioral data were conflicting. Specifically, animals that consumed a high-fat diet and received inulin showed signs of impaired learning and memory caused by obesity. The HFD did not impact anxiety-related behaviors in the female rats. However, inulin appears to have an anxiolytic effect, in the ETM, when associated with the HFD. On the other hand, inulin appears to have affected the locomotor activity in the HFD in both open field and light-dark box. CONCLUSION Our results show that consumption of a HFD induced obesity in female rats, similar to males. However, HFD consumption did not cause a consistent increase in anxiety-related behaviors in female Wistar rats. Treatment with inulin at the dosage used did not exert consistent changes on the behavior of the animals, but attenuated the abdominal WAT expansion and the hepatic redox imbalance elicited by high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Lucas Gabriel Vieira
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | | | - Máira Tereza Talma Chírico
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | - Ana Beatriz de Souza
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, MG 35400-000, Brazil.
| | - Natália Alves de Matos
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, MG 35400-000, Brazil.
| | - Deoclécio Alves Chianca-Jr
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, MG 35400-000, Brazil.
| | - Frank Silva Bezerra
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, MG 35400-000, Brazil.
| | - Rodrigo Cunha de Menezes
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| |
Collapse
|
10
|
Moulton C, Murri A, Benotti G, Fantini C, Duranti G, Ceci R, Grazioli E, Cerulli C, Sgrò P, Rossi C, Magno S, Di Luigi L, Caporossi D, Parisi A, Dimauro I. The impact of physical activity on promoter-specific methylation of genes involved in the redox-status and disease progression: A longitudinal study on post-surgery female breast cancer patients undergoing medical treatment. Redox Biol 2024; 70:103033. [PMID: 38211440 PMCID: PMC10821067 DOI: 10.1016/j.redox.2024.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Most anticancer treatments act on oxidative-stress pathways by producing reactive oxygen species (ROS) to kill cancer cells, commonly resulting in consequential drug-induced systemic cytotoxicity. Physical activity (PA) has arisen as an integrative cancer therapy, having positive health effects, including in redox-homeostasis. Here, we investigated the impact of an online supervised PA program on promoter-specific DNA methylation, and corresponding gene expression/activity, in 3 antioxidants- (SOD1, SOD2, and CAT) and 3 breast cancer (BC)-related genes (BRCA1, L3MBTL1 and RASSF1A) in a population-based sample of women diagnosed with primary BC, undergoing medical treatment. We further examined mechanisms involved in methylating and demethylating pathways, predicted biological pathways and interactions of exercise-modulated molecules, and the functional relevance of modulated antioxidant markers on parameters related to aerobic capacity/endurance, physical fatigue and quality of life (QoL). PA maintained levels of SOD activity in blood plasma, and at the cellular level significantly increased SOD2 mRNA (≈+77 %), contrary to their depletion due to medical treatment. This change was inversely correlated with DNA methylation in SOD2 promoter (≈-20 %). Similarly, we found a significant effect of PA only on L3MBTL1 promoter methylation (≈-25 %), which was inversely correlated with its mRNA (≈+43 %). Finally, PA increased TET1 mRNA levels (≈+15 %) and decreased expression of DNMT3B mRNA (≈-28 %). Our results suggest that PA-modulated DNA methylation affects several signalling pathways/biological activities involved in the cellular oxidative stress response, chromatin organization/regulation, antioxidant activity and DNA/protein binding. These changes may positively impact clinical outcomes and improve the response to cancer treatment in post-surgery BC patients.
Collapse
Affiliation(s)
- Chantalle Moulton
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Arianna Murri
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Gianmarco Benotti
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Cristina Fantini
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Guglielmo Duranti
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Roberta Ceci
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Claudia Cerulli
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Paolo Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Cristina Rossi
- Center for Integrative Oncology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Italy
| | - Stefano Magno
- Center for Integrative Oncology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Italy
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Attilio Parisi
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.
| |
Collapse
|
11
|
Liu J, Duangjan C, Irwin RW, Curran SP. WDR23 mediates NRF2 proteostasis and cytoprotective capacity in the hippocampus. Mech Ageing Dev 2024; 218:111914. [PMID: 38301772 PMCID: PMC10939789 DOI: 10.1016/j.mad.2024.111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/05/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
Pathogenic brain aging and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease are characterized by chronic neuroinflammation and the accumulation of dysfunctional or misfolded proteins that lead to progressive neuronal cell death. Here we demonstrate that a murine model with global loss of the CUL4-DDB1 substrate receptor WDR23 (Wdr23KO) results in changes in multiple age-related hippocampal-dependent behaviors. The behavioral differences observed in Wdr23KO animals accompany the stabilization of the NRF2/NFE2L2 protein, an increase in RNA transcripts regulated by this cytoprotective transcription factor, and an increase in the steady state level of antioxidant defense proteins. Taken together, these findings reveal a role for WDR23-proteostasis in mediating cytoprotective capacity in the hippocampus and reveal the potential for targeting WDR23-NRF2 signaling interactions for development of therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Jiahui Liu
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA 90089, USA
| | - Chatrawee Duangjan
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA 90089, USA
| | - Ronald W Irwin
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA 90089, USA
| | - Sean P Curran
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA 90089, USA.
| |
Collapse
|
12
|
Ma L, Wang D. Sex differences in the susceptibility to valproic acid-associated liver injury in epileptic patients. Clin Toxicol (Phila) 2024; 62:101-106. [PMID: 38512019 DOI: 10.1080/15563650.2024.2316144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/03/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Valproic acid has been widely used as an antiepileptic drug for several decades. Long-term valproic acid treatment is usually accompanied by liver injury. Although both men and women are susceptible to valproic acid-associated liver injury, hepatotoxicity differs between the sexes. However, the mechanisms underlying sex differences in valproic acid-associated liver injury remain unclear. METHODS To explore potential risk factors for the susceptibility to valproic acid-associated liver injury, 231 pediatric patients with epilepsy (119 males, 112 females) were enrolled for laboratory and genetic analysis. RESULTS Heterozygous genotype of catalase C-262T (P = 0.045) and the concentrations of glutathione (P = 0.002) and thiobarbituric acid-reactive substances (P = 0.011) were associated with the sex-specific susceptibility to valproic acid-associated liver injury. Meanwhile, logistic regression analysis revealed that carriers of heterozygous genotype of catalase C-262T (P = 0.010, odds ratio: 4.163; 95 percent confidence interval 1.400 - 7.378), glutathione concentration (P = 0.001, odds ratio: 2.421; 95 percent confidence interval 2.262 - 2.591) and male patients (P = 0.005, odds ratio: 1.344; 95% confidence interval 0.782 - 2.309) had a higher risk for valproic acid-associated liver injury. DISCUSSION The mechanism underlying valproic acid-induced hepatotoxicity remains unclear. Additionally, factors that may contribute to the observed differences in the incidence of hepatotoxicity between males and females have yet to be defined. This study identifies several genetic factors that may predispose patients to valproic acid-associated hepatotoxicity. LIMITATIONS This relatively small sample size of children with one ethnicity some of whom were taking other antiepileptics that are potentially hepatotoxic. CONCLUSION Catalase C-262T genotype, glutathione concentration and gender (male) are potential risk factors for the susceptibility to valproic acid-associated liver injury.
Collapse
Affiliation(s)
- Linfeng Ma
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Dan Wang
- School of life science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Liu J, Duangjan C, Irwin RW, Curran SP. WDR23 mediates NRF2 proteostasis and cytoprotective capacity in the hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561805. [PMID: 37873429 PMCID: PMC10592735 DOI: 10.1101/2023.10.10.561805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Pathogenic brain aging and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease are characterized by chronic neuroinflammation and the accumulation of dysfunctional or misfolded proteins that lead to progressive neuronal cell death. Here we demonstrate that a murine model with global loss of the CUL4-DDB1 substrate receptor WDR23 ( Wdr23KO ) results in changes in multiple age-related hippocampal-dependent behaviors. The behavioral differences observed in Wdr23KO animals accompany the stabilization of the NRF2/NFE2L2 protein, an increase in RNA transcripts regulated by this cytoprotective transcription factor, and an increase in the steady state level of antioxidant defense proteins. Taken together, these findings reveal a role for WDR23-proteostasis in mediating cytoprotective capacity in the hippocampus and reveal the potential for targeting WDR23-NRF2 signaling interactions for development of therapies for neurodegenerative disorders. HIGHLIGHTS WDR23 regulates NRF2/NFE2L2 stability in the mouse hippocampus Loss of Wdr23 significantly increases the expression of NFE2L2/NRF2 target genes Global loss of WDR23 influences age-related behaviors differentially in males and females.
Collapse
|
14
|
Affiliation(s)
- Carmela Rita Balistreri
- Cellular, Molecular Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Corso Tukory, 211, 90134 Palermo, Italy.
| |
Collapse
|
15
|
Moir HJ, Maciejczyk M, Maciejczyk M, Aidar FJ, Arazi H. Editorial: Exercise-induced oxidative stress and the role of antioxidants in sport and exercise. Front Sports Act Living 2023; 5:1269826. [PMID: 37654804 PMCID: PMC10466035 DOI: 10.3389/fspor.2023.1269826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Affiliation(s)
- Hannah J. Moir
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University, London, United Kingdom
- EMJ, London, United Kingdom
| | - Marcin Maciejczyk
- Faculty of Physical Education and Sport, University School of Physical Education, Kraków, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Białystok, Poland
| | - Felipe J. Aidar
- Department of Physical Education, Federal University of Sergipe, São Cristóvão, Brazil
| | - Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
16
|
Jovanović M, Kovačević S, Brkljačić J, Djordjevic A. Oxidative Stress Linking Obesity and Cancer: Is Obesity a 'Radical Trigger' to Cancer? Int J Mol Sci 2023; 24:ijms24098452. [PMID: 37176160 PMCID: PMC10179114 DOI: 10.3390/ijms24098452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is on the rise worldwide, and consequently, obesity-related non-communicable diseases are as well. Nutritional overload induces metabolic adaptations in an attempt to restore the disturbed balance, and the byproducts of the mechanisms at hand include an increased generation of reactive species. Obesity-related oxidative stress causes damage to vulnerable systems and ultimately contributes to neoplastic transformation. Dysfunctional obese adipose tissue releases cytokines and induces changes in the cell microenvironment, promoting cell survival and progression of the transformed cancer cells. Other than the increased risk of cancer development, obese cancer patients experience higher mortality rates and reduced therapy efficiency as well. The fact that obesity is considered the second leading preventable cause of cancer prioritizes the research on the mechanisms connecting obesity to cancerogenesis and finding the solutions to break the link. Oxidative stress is integral at different stages of cancer development and advancement in obese patients. Hypocaloric, balanced nutrition, and structured physical activity are some tools for relieving this burden. However, the sensitivity of simultaneously treating cancer and obesity poses a challenge. Further research on the obesity-cancer liaison would offer new perspectives on prevention programs and treatment development.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Kovačević
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|