1
|
Bou-Abdallah F, Boumaiza M, Srivastava AK. Effects of ferritin iron loading, subunit composition, and the NCOA4-iron sulfur cluster on ferritin-NCOA4 interactions: An isothermal titration calorimetry study. Int J Biol Macromol 2024; 278:135044. [PMID: 39182888 DOI: 10.1016/j.ijbiomac.2024.135044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Ferritin is a 24-mer protein nanocage that stores iron and regulates intracellular iron homeostasis. The nuclear receptor coactivator-4 (NCOA4) binds specifically to ferritin H subunits and facilitates the autophagic trafficking of ferritin to the lysosome for degradation and iron release. Using isothermal titration calorimetry (ITC), we studied the thermodynamics of the interactions between ferritin and the soluble fragment of NCOA4 (residues 383-522), focusing on the effects of the recently identified FeS cluster bound to NCOA4, ferritin subunit composition, and ferritin-iron loading. Our findings show that in the presence of the FeS cluster, the binding is driven by a more favorable enthalpy change and a decrease in entropy change, indicating a key role for the FeS cluster in the structural organization and stability of the complex. The ferritin iron core further enhances this association, increasing binding enthalpy and stabilizing the NCOA4-ferritin complex. The ferritin subunit composition primarily affects binding stoichiometry of the reaction based on the number of H subunits in the ferritin H/L oligomer. Our results demonstrate that both the FeS cluster and the ferritin iron core significantly affect the binding thermodynamics of the NCOA4-ferritin interactions, suggesting regulatory roles for the FeS cluster and ferritin iron content in ferritinophagy.
Collapse
Affiliation(s)
- Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | - Mohamed Boumaiza
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA
| | - Ayush K Srivastava
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA
| |
Collapse
|
2
|
Ali HA, Abbasi MH, Akhtar T, Arif A, Anjum M, Fatima S, Mehmood R, Farooq A, Sheikh N, Khawar MB. Platelet-Rich Plasma (PRP) Mitigates Kidney Dysfunction in Alloxan-Induced Diabetic Mice via Modulation of Renal Iron Regulatory Genes. Biochem Genet 2024:10.1007/s10528-024-10871-w. [PMID: 39060642 DOI: 10.1007/s10528-024-10871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/15/2024] [Indexed: 07/28/2024]
Abstract
Kidney dysfunction is a prevalent complication of diabetes mellitus, contributing significantly to diabetes-related morbidity and mortality. We aim to explore whether platelet-rich plasma administration can modulate iron regulation mechanism within the kidney, thereby mitigating renal dysfunction associated with diabetes. Albino mice with an average body weight of 20 ± 5 g were randomly divided into five groups (N = 50; n = 10): Control Group, PRP Group, diabetic group (DG), treated group A (TA), and treated group B (TB). A single intraperitoneal dose of alloxan (160 mg/kg of body weight) was administered to mice in the DG and in both treated groups. Upon confirmation of diabetes, the DG was left untreated, while PRP treatment (0.5 ml/kg of body weight) was administered to the TA and TB groups for two and four weeks, respectively. Histological examinations of kidney tissues revealed notable signs of damage in DG, which were subsequently improved upon PRP treatment. Likewise, PRP treatment restored the changes in liver enzymes, oxidative stress biomarkers and serum electrolytes in both treated groups. Furthermore, there was an observed upregulation of iron regulatory genes, such as Renin, Epo, Hepc, Kim1, and Hfe, in the DG, accompanied by a downregulation of Tfr1 and Fpn; however, Dmt1 and Dcytb1 expression remained unaltered. Treatment with PRP restored the expression of iron regulatory genes in both treated groups. This study concluded that PRP treatment effectively restored the renal histochemistry and the expression of renal iron regulatory genes in an alloxan-induced diabetic mice model.
Collapse
Affiliation(s)
| | | | - Tasleem Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Amin Arif
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
- Department of Zoology, Government MAO Graduate College, Lahore, Pakistan
| | - Mehreen Anjum
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Sana Fatima
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Rabia Mehmood
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Adil Farooq
- Department of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Nadeem Sheikh
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| |
Collapse
|
3
|
Hu Y, Huang Y, Zong L, Lin J, Liu X, Ning S. Emerging roles of ferroptosis in pulmonary fibrosis: current perspectives, opportunities and challenges. Cell Death Discov 2024; 10:301. [PMID: 38914560 PMCID: PMC11196712 DOI: 10.1038/s41420-024-02078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disorder characterized by abnormal myofibroblast activation, accumulation of extracellular matrix (ECM), and thickening of fibrotic alveolar walls, resulting in deteriorated lung function. PF is initiated by dysregulated wound healing processes triggered by factors such as excessive inflammation, oxidative stress, and coronavirus disease (COVID-19). Despite advancements in understanding the disease's pathogenesis, effective preventive and therapeutic interventions are currently lacking. Ferroptosis, an iron-dependent regulated cell death (RCD) mechanism involving lipid peroxidation and glutathione (GSH) depletion, exhibits unique features distinct from other RCD forms (e.g., apoptosis, necrosis, and pyroptosis). Imbalance between reactive oxygen species (ROS) production and detoxification leads to ferroptosis, causing cellular dysfunction through lipid peroxidation, protein modifications, and DNA damage. Emerging evidence points to the crucial role of ferroptosis in PF progression, driving macrophage polarization, fibroblast proliferation, and ECM deposition, ultimately contributing to alveolar cell death and lung tissue scarring. This review provides a comprehensive overview of the latest findings on the involvement and signaling mechanisms of ferroptosis in PF pathogenesis, emphasizing potential novel anti-fibrotic therapeutic approaches targeting ferroptosis for PF management.
Collapse
Affiliation(s)
- Yixiang Hu
- Department of Clinical Pharmacy, The Affiliated Xiangtan Center Hospital of Hunan University, Xiangtan, 411100, China
| | - Ying Huang
- Zhongshan Hospital of Traditional Chinese Medicine Afflilated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, China
| | - Lijuan Zong
- Department of Rehabilitation Medicine, Zhongda Hospital of Southeast University, Nanjing, 210096, China
| | - Jiaxin Lin
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Xiang Liu
- Department of Clinical Pharmacy, The Affiliated Xiangtan Center Hospital of Hunan University, Xiangtan, 411100, China.
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
4
|
Taneera J, Mahgoub E, Qannita R, Alalami A, Shehadat OA, Youssef M, Dib A, Hajji AA, Hajji AA, Al-Khaja F, Dewedar H, Hamad M. β-Thalassemia and Diabetes Mellitus: Current State and Future Directions. Horm Metab Res 2024; 56:272-278. [PMID: 37871612 DOI: 10.1055/a-2185-5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
β-Thalassemia major is a congenital hemoglobin disorder that requires regular blood transfusion. The disease is often associated with iron overload and diabetes mellitus, among other complications. Pancreatic iron overload in β-thalassemia patients disrupts β-cell function and insulin secretion and induces insulin resistance. Several risk factors, including family history of diabetes, sedentary lifestyle, obesity, gender, and advanced age increase the risk of diabetes in β-thalassemia patients. Precautionary measures such as blood glucose monitoring, anti-diabetic medications, and healthy living in β-thalassemia patients notwithstanding, the prevalence of diabetes in β-thalassemia patients continues to rise. This review aims to address the relationship between β-thalassemia and diabetes in an attempt to understand how the pathology and management of β-thalassemia precipitate diabetes mellitus. The possible employment of surrogate biomarkers for early prediction and intervention is discussed. More work is still needed to better understand the molecular mechanism(s) underlying the link between β-thalassemia and diabetes and to identify novel prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Eglal Mahgoub
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Reem Qannita
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ayah Alalami
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ola Al Shehadat
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mona Youssef
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ayah Dib
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Alaa Al Hajji
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Amani Al Hajji
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Hany Dewedar
- Dubai Thalassemia Center, Dubai, United Arab Emirates
| | - Mawieh Hamad
- University of Sharjah College of Health Sciences, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Cao MY, Zhang ZD, Hou XR, Wang XP. The Potential Role of Non-coding RNAs in Regulating Ferroptosis in Cancer: Mechanisms and Application Prospects. Anticancer Agents Med Chem 2024; 24:1182-1196. [PMID: 39021186 DOI: 10.2174/0118715206322163240710112404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Cancer is the second leading cause of death globally. Despite some successes, conventional cancer treatments are insufficient to address the growing problem of drug resistance in tumors and to achieve efficient treatment outcomes. Therefore, there is an urgent need to explore new therapeutic options. Ferroptosis, a type of iron- and reactive oxygen species-dependent regulated cell death, has been closely associated with cancer development and progression. Non-coding RNAs (ncRNAs) are a class of RNAs that do not code for proteins, and studies have demonstrated their involvement in the regulation of ferroptosis in cancer. This review aims to explore the molecular regulatory mechanisms of ncRNAs involved in ferroptosis in cancer and to emphasize the feasibility of ferroptosis and ncRNAs as novel therapeutic strategies for cancer. We conducted a systematic and extensive literature review using PubMed, Google Scholar, Web of Science, and various other sources to identify relevant studies on ferroptosis, ncRNAs, and cancer. A deeper understanding of ferroptosis and ncRNAs could facilitate the development of new cancer treatment strategies.
Collapse
Affiliation(s)
- Ming-Yuan Cao
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, P.R. China
| | - Zhen-Dong Zhang
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, P.R. China
| | - Xin-Rui Hou
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, P.R. China
| | - Xiao-Ping Wang
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, P.R. China
| |
Collapse
|
6
|
Duarte TL, Lopes M, Oliveira M, Santos AG, Vasco C, Reis JP, Antunes AR, Gonçalves A, Chacim S, Oliveira C, Porto B, Teles MJ, Moreira AC, Silva AMN, Schwessinger R, Drakesmith H, Henrique R, Porto G, Duarte D. Iron overload induces dysplastic erythropoiesis and features of myelodysplasia in Nrf2-deficient mice. Leukemia 2024; 38:96-108. [PMID: 37857886 DOI: 10.1038/s41375-023-02067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Iron overload (IOL) is hypothesized to contribute to dysplastic erythropoiesis. Several conditions, including myelodysplastic syndrome, thalassemia and sickle cell anemia, are characterized by ineffective erythropoiesis and IOL. Iron is pro-oxidant and may participate in the pathophysiology of these conditions by increasing genomic instability and altering the microenvironment. There is, however, lack of in vivo evidence demonstrating a role of IOL and oxidative damage in dysplastic erythropoiesis. NRF2 transcription factor is the master regulator of antioxidant defenses, playing a crucial role in the cellular response to IOL in the liver. Here, we crossed Nrf2-/- with hemochromatosis (Hfe-/-) or hepcidin-null (Hamp1-/-) mice. Double-knockout mice developed features of ineffective erythropoiesis and myelodysplasia including macrocytic anemia, splenomegaly, and accumulation of immature dysplastic bone marrow (BM) cells. BM cells from Nrf2/Hamp1-/- mice showed increased in vitro clonogenic potential and, upon serial transplantation, recipients disclosed cytopenias, despite normal engraftment, suggesting defective differentiation. Unstimulated karyotype analysis showed increased chromosome instability and aneuploidy in Nrf2/Hamp1-/- BM cells. In HFE-related hemochromatosis patients, NRF2 promoter SNP rs35652124 genotype TT (predicted to decrease NRF2 expression) associated with increased MCV, consistent with erythroid dysplasia. Our results suggest that IOL induces ineffective erythropoiesis and dysplastic hematologic features through oxidative damage in Nrf2-deficient cells.
Collapse
Affiliation(s)
- Tiago L Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Marta Lopes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Mónica Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Catarina Vasco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Joana P Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Rita Antunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Andreia Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sérgio Chacim
- Serviço de Hematologia e Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto Francisco Gentil, E.P.E. (IPO Porto), Porto, Portugal
| | - Cláudia Oliveira
- Laboratório de Citogenética, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria José Teles
- Departmento de Patologia Clínica, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Ana C Moreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - André M N Silva
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- LAQV-REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ron Schwessinger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rui Henrique
- Serviço de Anatomia Patológica, IPO Porto, Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Graça Porto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Serviço de Imuno-hemoterapia, Centro Hospitalar Universitário de Santo António (CHUdSA), Porto, Portugal
| | - Delfim Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Serviço de Hematologia e Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto Francisco Gentil, E.P.E. (IPO Porto), Porto, Portugal.
- Departmento de Biomedicina, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.
- P.CCC - Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal.
| |
Collapse
|
7
|
Colucci S, Carvalho Oliveira T, Muckenthaler MU, Marques O. Iron homeostasis in mice: does liver lobe matter? Am J Physiol Gastrointest Liver Physiol 2023; 325:G453-G457. [PMID: 37667844 DOI: 10.1152/ajpgi.00085.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
The liver plays a crucial role in maintaining systemic iron homeostasis through iron storage, sensing of systemic iron needs, and production of the iron-regulatory hormone hepcidin. While mice are commonly used as models for studying human iron homeostasis, their liver structure differs significantly from humans. Since the mouse liver is structured in six separated lobes, often, the analysis of a single defined lobe is preferred due to concerns over data reproducibility between experimental cohorts. In this study, we compared iron-related parameters in distinct liver lobes of C57BL/6 wild-type mice across different ages. We found that the non-heme iron levels, as well as the mRNA and protein expression of iron storage protein Ferritin and the iron importer Transferrin Receptor 1, were similar between liver lobes. Additionally, the mRNA expression of Hepcidin, as well as its regulators, Bmp2 and Bmp6, and iron importers Zip8 and Zip14 were comparable. Minor differences were observed in Ferroportin mRNA levels of 24-wk-old mice; however, this did not correlate with altered iron content. The findings in wild-type mice were reproduced in Hfe knock-out mice - a well-established genetic model of the most prevalent form of hemochromatosis. Overall, our results indicate that C57BL/6 mouse liver lobes can be used interchangeably for assessing iron content and expression of iron-related genes. Understanding if these findings are applicable to other mouse developmental stages, strains, or models of (iron-related) disorders will be key to promote reduction of experimental animal numbers and facilitate resource sharing among research groups studying liver iron homeostasis.NEW & NOTEWORTHY This study reveals that, despite being structurally separated, liver lobes from C57BL/6 wild-type and iron-overloaded mice can be used interchangeably for the evaluation of iron content and expression of iron-related genes.
Collapse
Affiliation(s)
- Silvia Colucci
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center (KiTZ), University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), EMBL and University of Heidelberg, Heidelberg, Germany
| | - Tiago Carvalho Oliveira
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center (KiTZ), University Hospital Heidelberg, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center (KiTZ), University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), EMBL and University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Oriana Marques
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center (KiTZ), University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), EMBL and University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Yaskolka Meir A, Yun H, Stampfer MJ, Liang L, Hu FB. Nutrition, DNA methylation and obesity across life stages and generations. Epigenomics 2023; 15:991-1015. [PMID: 37933548 DOI: 10.2217/epi-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Obesity is a complex multifactorial condition that often manifests in early life with a lifelong burden on metabolic health. Diet, including pre-pregnancy maternal diet, in utero nutrition and dietary patterns in early and late life, can shape obesity development. Growing evidence suggests that epigenetic modifications, specifically DNA methylation, might mediate or accompany these effects across life stages and generations. By reviewing human observational and intervention studies conducted over the past 10 years, this work provides a comprehensive overview of the evidence linking nutrition to DNA methylation and its association with obesity across different age periods, spanning from preconception to adulthood and identify future research directions in the field.
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Huan Yun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Meir J Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Wang R, Chen X, Li X, Wang K. Molecular therapy of cardiac ischemia-reperfusion injury based on mitochondria and ferroptosis. J Mol Med (Berl) 2023; 101:1059-1071. [PMID: 37505243 DOI: 10.1007/s00109-023-02346-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Excessive death of myocardial cells can lead to various cardiovascular diseases and even develop into heart failure, so developing ideal treatment plans based on pathogenesis is of great significance for cardiopathy. After the heart undergoes ischemia‒reperfusion (I/R), myocardial cells accumulate a large amount of peroxides, leading to mitochondrial dysfunction and inducing ferroptosis. Ferroptosis is a form of iron-dependent regulatory cell death (RCD) caused by imbalanced redox and iron metabolism that leads to severe cell damage through the accumulation of peroxides. The mechanism of ferroptosis is highly correlated with mitochondrial metabolism. Myocardial cells are rich in a large number of mitochondria, which serve as energy supply centers and are prone to producing reactive oxygen species (ROS), providing opportunities for oxidative stress caused by ferroptosis. Ferroptosis is related to various cardiovascular diseases, and potential treatment methods designed around ferroptosis may alter the pathological progression of cardiovascular diseases. Therefore, this review investigates the regulatory mechanisms of ferroptosis, exploring the close pathological and physiological connections between ferroptosis and mitochondrial and cardiac I/R injury. Targeting ferroptosis and mitochondria for intervention may be an effective plan for preventing and treating cardiac I/R injury.
Collapse
Affiliation(s)
- Ruiquan Wang
- Key Laboratory of Birth Regulation and Control Technologyof , National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xinzhe Chen
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xinmin Li
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Key Laboratory of Birth Regulation and Control Technologyof , National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
10
|
Shan C, Liang Y, Wang K, Li P. Noncoding RNAs in cancer ferroptosis: From biology to clinical opportunity. Biomed Pharmacother 2023; 165:115053. [PMID: 37379641 DOI: 10.1016/j.biopha.2023.115053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Ferroptosis is a recently discovered pattern of programmed cell death that is nonapoptotic and irondependent. It is involved in lipid peroxidation dependent on reactive oxygen species. Ferroptosis has been verified to play a crucial regulatory role in a variety of pathological courses of disease, in particularly cancer. Emerging research has highlighted the potential of ferroptosis in tumorigenesis, cancer development and resistance to chemotherapy. However, the regulatory mechanism of ferroptosis remains unclear, which limits the application of ferroptosis in cancer treatment. Noncoding RNAs (ncRNAs) are noncoding transcripts that regulate gene expression in various ways to affect the malignant phenotypes of cancer cells. At present, the biological function and underlying regulatory mechanism of ncRNAs in cancer ferroptosis have been partially elucidated. Herein, we summarize the current knowledge of the central regulatory network of ferroptosis, with a focus on the regulatory functions of ncRNAs in cancer ferroptosis. The clinical application and prospects of ferroptosis-related ncRNAs in cancer diagnosis, prognosis and anticancer therapies are also discussed. Elucidating the function and mechanism of ncRNAs in ferroptosis, along with assessing the clinical significance of ferroptosis-related ncRNAs, provides new perspectives for understanding cancer biology and treatment approaches, which may benefit numerous cancer patients in the future.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
11
|
Scaramellini N, Fischer D, Agarvas AR, Motta I, Muckenthaler MU, Mertens C. Interpreting Iron Homeostasis in Congenital and Acquired Disorders. Pharmaceuticals (Basel) 2023; 16:ph16030329. [PMID: 36986429 PMCID: PMC10054723 DOI: 10.3390/ph16030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Mammalian cells require iron to satisfy their metabolic needs and to accomplish specialized functions, such as hematopoiesis, mitochondrial biogenesis, energy metabolism, or oxygen transport. Iron homeostasis is balanced by the interplay of proteins responsible for iron import, storage, and export. A misbalance of iron homeostasis may cause either iron deficiencies or iron overload diseases. The clinical work-up of iron dysregulation is highly important, as severe symptoms and pathologies may arise. Treating iron overload or iron deficiency is important to avoid cellular damage and severe symptoms and improve patient outcomes. The impressive progress made in the past years in understanding mechanisms that maintain iron homeostasis has already changed clinical practice for treating iron-related diseases and is expected to improve patient management even further in the future.
Collapse
Affiliation(s)
- Natalia Scaramellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milano, Italy
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dania Fischer
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Anand R. Agarvas
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milano, Italy
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Martina U. Muckenthaler
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Side, 69120 Heidelberg, Germany
| | - Christina Mertens
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221564582; Fax: +49-6221564580
| |
Collapse
|
12
|
Qiu F, Wu L, Yang G, Zhang C, Liu X, Sun X, Chen X, Wang N. The role of iron metabolism in chronic diseases related to obesity. Mol Med 2022; 28:130. [PMID: 36335331 PMCID: PMC9636637 DOI: 10.1186/s10020-022-00558-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity is one of the major public health problems threatening the world, as well as a potential risk factor for chronic metabolic diseases. There is growing evidence that iron metabolism is altered in obese people, however, the highly refined regulation of iron metabolism in obesity and obesity-related complications is still being investigated. Iron accumulation can affect the body’s sensitivity to insulin, Type 2 diabetes, liver disease and cardiovascular disease. This review summarized the changes and potential mechanisms of iron metabolism in several chronic diseases related to obesity, providing new clues for future research.
Collapse
|
13
|
Kim SL, Shin S, Yang SJ. Iron Homeostasis and Energy Metabolism in Obesity. Clin Nutr Res 2022; 11:316-330. [PMID: 36381472 PMCID: PMC9633967 DOI: 10.7762/cnr.2022.11.4.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Iron plays a role in energy metabolism as a component of vital enzymes and electron transport chains (ETCs) for adenosine triphosphate (ATP) synthesis. The tricarboxylic acid (TCA) cycle and oxidative phosphorylation are crucial in generating ATP in mitochondria. At the mitochondria matrix, heme and iron-sulfur clusters are synthesized. Iron-sulfur cluster is a part of the aconitase in the TCA cycle and a functional or structural component of electron transfer proteins. Heme is the prosthetic group for cytochrome c, a principal component of the respiratory ETC. Regarding fat metabolism, iron regulates mitochondrial fat oxidation and affects the thermogenesis of brown adipose tissue (BAT). Thermogenesis is a process that increases energy expenditure, and BAT is a tissue that generates heat via mitochondrial fuel oxidation. Iron deficiency may impair mitochondrial fuel oxidation by inhibiting iron-containing molecules, leading to decreased energy expenditure. Although it is expected that impaired mitochondrial fuel oxidation may be restored by iron supplementation, its underlying mechanisms have not been clearly identified. Therefore, this review summarizes the current evidence on how iron regulates energy metabolism considering the TCA cycle, oxidative phosphorylation, and thermogenesis. Additionally, we relate iron-mediated metabolic regulation to obesity and obesity-related complications.
Collapse
Affiliation(s)
- Se Lin Kim
- Department of Food and Nutrition, Seoul Women’s University, Seoul 01797, Korea
| | - Sunhye Shin
- Department of Food and Nutrition, Seoul Women’s University, Seoul 01797, Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women’s University, Seoul 01797, Korea
| |
Collapse
|
14
|
Iron, Neuroinflammation and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23137267. [PMID: 35806270 PMCID: PMC9266893 DOI: 10.3390/ijms23137267] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022] Open
Abstract
Disturbance of the brain homeostasis, either directly via the formation of abnormal proteins or cerebral hypo-perfusion, or indirectly via peripheral inflammation, will activate microglia to synthesise a variety of pro-inflammatory agents which may lead to inflammation and cell death. The pro-inflammatory cytokines will induce changes in the iron proteins responsible for maintaining iron homeostasis, such that increased amounts of iron will be deposited in cells in the brain. The generation of reactive oxygen and nitrogen species, which is directly involved in the inflammatory process, can significantly affect iron metabolism via their interaction with iron-regulatory proteins (IRPs). This underlies the importance of ensuring that iron is maintained in a form that can be kept under control; hence, the elegant mechanisms which have become increasingly well understood for regulating iron homeostasis. Therapeutic approaches to minimise the toxicity of iron include N-acetyl cysteine, non-steroidal anti-inflammatory compounds and iron chelation.
Collapse
|
15
|
Rana S, Prabhakar N. Iron disorders and hepcidin. Clin Chim Acta 2021; 523:454-468. [PMID: 34755647 DOI: 10.1016/j.cca.2021.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Iron is an essential element due to its role in a wide variety of physiological processes. Iron homeostasis is crucial to prevent iron overload disorders as well as iron deficiency anemia. The liver synthesized peptide hormone hepcidin is a master regulator of systemic iron metabolism. Given its role in overall health, measurement of hepcidin can be used as a predictive marker in disease states. In addition, hepcidin-targeting drugs appear beneficial as therapeutic agents. This review emphasizes recent development on analytical techniques (immunochemical, mass spectrometry and biosensors) and therapeutic approaches (hepcidin agonists, stimulators and antagonists). These insights highlight hepcidin as a potential biomarker as well as an aid in the development of new drugs for iron disorders.
Collapse
Affiliation(s)
- Shilpa Rana
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India
| | - Nirmal Prabhakar
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
16
|
Hu Y, Liu S, Liu W, Zhang Z, Liu Y, Sun D, Zhang M, Fang J. Bioinformatics analysis of genes related to iron death in diabetic nephropathy through network and pathway levels based approaches. PLoS One 2021; 16:e0259436. [PMID: 34735495 PMCID: PMC8568295 DOI: 10.1371/journal.pone.0259436] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy is one of the common microvascular complications of diabetes. Iron death is a recently reported way of cell death. To explore the effects of iron death on diabetic nephropathy, iron death score of diabetic nephropathy was analyzed based on the network and pathway levels. Furthermore, markers related to iron death were screened. Using RNA-seq data of diabetic nephropathy, samples were clustered uniformly and the disease was classified. Differentially expressed gene analysis was conducted on the typed disease samples, and the WGCNA algorithm was used to obtain key modules. String database was used to perform protein interaction analysis on key module genes for the selection of Hub genes. Moreover, principal component analysis method was applied to get transcription factors and non-coding genes, which interact with the Hub gene. All samples can be divided into two categories and principal component analysis shows that the two categories are significantly different. Hub genes (FPR3, C3AR1, CD14, ITGB2, RAC2 and ITGAM) related to iron death in diabetic nephropathy were obtained through gene expression differential analysis between different subtypes. Non-coding genes that interact with Hub genes, including hsa-miR-572, hsa-miR-29a-3p, hsa-miR-29b-3p, hsa-miR-208a-3p, hsa-miR-153-3p and hsa-miR-29c-3p, may be related to diabetic nephropathy. Transcription factors HIF1α, KLF4, KLF5, RUNX1, SP1, VDR and WT1 may be related to diabetic nephropathy. The above factors and Hub genes are collectively involved in the occurrence and development of diabetic nephropathy, which can be further studied in the future. Moreover, these factors and genes may be potential target for therapeutic drugs.
Collapse
Affiliation(s)
- Yaling Hu
- Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuang Liu
- Department of Urology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenyuan Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziyuan Zhang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuxiang Liu
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dalin Sun
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingyu Zhang
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- * E-mail:
| |
Collapse
|
17
|
Marku A, Galli A, Marciani P, Dule N, Perego C, Castagna M. Iron Metabolism in Pancreatic Beta-Cell Function and Dysfunction. Cells 2021; 10:2841. [PMID: 34831062 PMCID: PMC8616520 DOI: 10.3390/cells10112841] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
Iron is an essential element involved in a variety of physiological functions. In the pancreatic beta-cells, being part of Fe-S cluster proteins, it is necessary for the correct insulin synthesis and processing. In the mitochondria, as a component of the respiratory chain, it allows the production of ATP and reactive oxygen species (ROS) that trigger beta-cell depolarization and potentiate the calcium-dependent insulin release. Iron cellular content must be finely tuned to ensure the normal supply but also to prevent overloading. Indeed, due to the high reactivity with oxygen and the formation of free radicals, iron excess may cause oxidative damage of cells that are extremely vulnerable to this condition because the normal elevated ROS production and the paucity in antioxidant enzyme activities. The aim of the present review is to provide insights into the mechanisms responsible for iron homeostasis in beta-cells, describing how alteration of these processes has been related to beta-cell damage and failure. Defects in iron-storing or -chaperoning proteins have been detected in diabetic conditions; therefore, the control of iron metabolism in these cells deserves further investigation as a promising target for the development of new disease treatments.
Collapse
Affiliation(s)
| | | | | | | | - Carla Perego
- Department of Excellence Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste, 22134 Milano, Italy; (A.M.); (A.G.); (P.M.); (N.D.)
| | - Michela Castagna
- Department of Excellence Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste, 22134 Milano, Italy; (A.M.); (A.G.); (P.M.); (N.D.)
| |
Collapse
|
18
|
Colucci S, Marques O, Altamura S. 20 years of Hepcidin: How far we have come. Semin Hematol 2021; 58:132-144. [PMID: 34389105 DOI: 10.1053/j.seminhematol.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
Twenty years ago the discovery of hepcidin deeply changed our understanding of the regulation of systemic iron homeostasis. It is now clear that hepcidin orchestrates systemic iron levels by controlling the amount of iron exported into the bloodstream through ferroportin. Hepcidin expression is increased in situations where systemic iron levels should be reduced, such as in iron overload and infection. Conversely, hepcidin is repressed during iron deficiency, hypoxia or expanded erythropoiesis, to increase systemic iron availability and sustain erythropoiesis. In this review, we will focus on molecular mechanisms of hepcidin regulation and on the pathological consequences of their disruption.
Collapse
Affiliation(s)
- Silvia Colucci
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany..
| |
Collapse
|
19
|
Li S, Zheng L, Zhang J, Liu X, Wu Z. Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radic Biol Med 2021; 162:435-449. [PMID: 33152439 DOI: 10.1016/j.freeradbiomed.2020.10.323] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy (DN) is now considered the leading cause of end-stage renal disease. In diabetes, the accumulation of reactive oxygen species (ROS) and iron overload are important determinants that promote the occurrence of DN. However, the underlying mechanism of how they cause diabetic kidney damage remains unclear. Ferroptosis, characterized by iron-dependent lipid peroxidation, provided us with a new idea to explore the progression of DN. Iron overload, reduced antioxidant capability, massive ROS and lipid peroxidation were detected in the kidneys of streptozotocin-induced DBA/2J diabetic mice and high-glucose cultured human renal proximal tubular (HK-2) cells, which were the symbolic changes of ferroptosis. Furthermore, the characteristic mitochondrial morphological changes of ferroptosis were observed in high glucose cultured cells. Additional treatment of Ferrostatin-1 (Fer-1) in DN models significantly rescued these changes and alleviated the renal pathological injuries in diabetic mice. Besides, the decreased NFE2-related factor 2 (Nrf2) was observed in DN models. The specific knockdown of Nrf2 increased the sensitivity of cells to ferroptosis in the high glucose condition. In Nrf2 knockdown cells, up-regulating Nrf2 by treating with fenofibrate improved the situation of ferroptosis, which was verified in RSL-3 induced cells. Moreover, the ferroptosis-related changes were inhibited by increasing Nrf2 in fenofibrate treated diabetic mice, which delayed the progression of DN. Collectively, we demonstrated that ferroptosis was involved in the development of DN, and up-regulating Nrf2 by treating with fenofibrate inhibited diabetes-related ferroptosis, delaying the progression of DN. Our research revealed the development mechanism of DN from a new perspective, and provide a new approach delaying the progression of DN.
Collapse
Affiliation(s)
- Shuangwen Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Lisi Zheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Jun Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xuejun Liu
- Department of Neurology, Chu Hsien-I Memorial Hospital, Tianjin Medical University, Tianjin, 300134, China.
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|