1
|
Kiarashi M, Yasamineh S. The role of cellular lipid metabolism and lipid-lowering drugs in periodontitis. Int Immunopharmacol 2025; 152:114434. [PMID: 40086058 DOI: 10.1016/j.intimp.2025.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Initiated by bacteria, periodontitis (PD) is a complex, chronic inflammatory disease of the supporting tissue of the gums and teeth. Also linked to PD include human papillomavirus (HPV), hepatitis B virus (HBV), Epstein-Barr virus (EBV), human cytomegalovirus (CMV), and Herpes Simplex Virus (HSV). PD also raises the risk of cardiovascular disease (CVD) because it triggers inflammatory reactions throughout the body. CVD and chronic PD were linked to significantly elevated levels of C-reactive protein and blood lipids. Furthermore, elevated lipid peroxidation (LPO) levels may influence PD-related inflammation and periodontium degradation. In addition, there was a correlation between a reduction in oxidized low-density lipoprotein (LDL) levels and a reduction in circulating oxidative stress (OS); this was shown to be achieved by improved dental hygiene and non-surgical periodontal treatment. Consequently, this research set out to examine the connections between lipid metabolism and PD, as well as the effects of PD on the efficacy of statins and other medications that decrease cholesterol, as well as inhibitors and other lipid-lowering agents. Additionally, it's worth mentioning that statins and other cholesterol-lowering drugs may affect gum and tooth health. We found that higher blood levels of bad cholesterol exacerbate PD. Furthermore, PD makes CVD worse. The involvement of proprotein convertase subtilisin/kexin type 9 (PCSK9) in bacterial infections and the development of PD is inversely proportional to the increase in LDL levels. The treatment of this disease could, therefore, benefit greatly by inhibiting this chemical. Medications that lower cholesterol levels may potentially help treat this problem. The possible side effects of this medication on PD patients need more investigation. We have reviewed the literature on PD and its relationship to lipid metabolism, LDL receptors, and lipid rafts. Afterward, we investigated the role of lipid metabolism in the local viral infection that causes PD. Lastly, we examined how statins and other lipid-lowering medications impact PD.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
2
|
Dhiman A, Choudhary D, Mehan S, Maurya PK, Sharma AK, Kumar A, Mukherjee R, Gupta S, Khan Z, Gupta GD, Narula AS. Therapeutic potential of Baicalin against experimental obsessive compulsive disorder: Evidence from CSF, blood plasma, and brain analysis. J Neuroimmunol 2025; 403:578598. [PMID: 40168745 DOI: 10.1016/j.jneuroim.2025.578598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Obsessive-Compulsive Disorder (OCD) is a complex neuropsychiatric condition characterized by recurrent obsessions and compulsions, significantly impacting an individual's functionality and quality of life. This study aimed to explore the neuroprotective and therapeutic potential of baicalin, a flavonoid with known antioxidant, anti-inflammatory, and neurotropic properties, in an animal model of OCD induced by 8-OH-DPAT (8HPAT). The research utilized in silico docking studies and in vivo experiments to assess baicalin's interactions with key intracellular targets: SIRT-1, Nrf2, HO-1, and PPAR-gamma, and its effects on neurochemical, neurobehavioral, and histopathological parameters. In silico results indicated a strong binding affinity of baicalin for SIRT-1, Nrf2, HO-1, and PPAR-gamma, suggesting potential regulatory roles in antioxidant and anti-inflammatory pathways. In-vivo findings demonstrated that baicalin, administered at doses of 50 mg/kg and 100 mg/kg, significantly alleviated OCD-like behaviours, including excessive lever pressing, marble burying, and compulsive checking. Baicalin treatment normalized serotonin and dopamine levels and reduced glutamate levels in the brain, restoring neurotransmitter balance. Furthermore, baicalin decreased inflammatory cytokines (TNF-alpha and IL-1 beta), improved complete blood count profile, and gross morphological and histopathological alterations by restoring neuronal density and cellular integrity in affected brain regions. Combining baicalin with fluvoxamine (10 mg/kg) showed synergistic effects, further enhancing neuroprotective outcomes. These results suggest that baicalin holds promise as a potential therapeutic agent for OCD, warranting further clinical investigation to explore its efficacy and underlying mechanisms in human subjects. The findings underscore the importance of targeting intracellular pathways and neurotransmitter systems in developing effective treatments for OCD and related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abhinay Dhiman
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Divya Choudhary
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India.
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Arun Kumar Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Ritam Mukherjee
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Sumedha Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
3
|
Trinh QD, Takada K, Pham NTK, Takano C, Namiki T, Ito S, Takeda Y, Okitsu S, Ushijima H, Hayakawa S, Komine-Aizawa S. Oxidative Stress Enhances Rubella Virus Infection in Immortalized Human First-Trimester Trophoblasts. Int J Mol Sci 2025; 26:1041. [PMID: 39940811 PMCID: PMC11817118 DOI: 10.3390/ijms26031041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Rubella infection (RuV) during early pregnancy is a known cause of congenital rubella syndrome (CRS). However, the mechanisms by which the virus crosses the placenta and infects the fetus are not fully understood. It has been known that various kinds of cell stresses can occur during the placenta formation. Previously, we demonstrated that low-glucose-induced endoplasmic reticulum stress could drastically enhance RuV infection in immortalized human first-trimester trophoblast cells. In this study, we investigated the roles of oxidative stress in RuV infection in these cells. Oxidative stress was induced in Swan.71 cells by culturing them in medium containing hydrogen peroxide (H2O2) in various concentrations and durations (50 µM or 100 µM for 24 h, or 150 µM for 1 h). RuV infection with a clinical strain was performed 24 h post-treatment, and capsid proteins were visualized at 24 and 48 h post-infection (hpi) using flow cytometry (FCM) and fluorescence microscopy (IF), respectively. The findings demonstrated that oxidative stress significantly enhanced RuV infection, as evidenced by FCM analysis, showing a twofold increase in infection rate, and confirmed by IF assay. Additionally, significantly increased intracellular viral replication was observed at 3 dpi. These findings suggest that oxidative stress during early pregnancy may promote the maternal-to-fetal transmission of rubella, contributing to the development of CRS.
Collapse
Affiliation(s)
- Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.T.); (N.T.K.P.); (C.T.); (T.N.); (S.I.); (Y.T.); (S.O.); (H.U.)
| | - Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.T.); (N.T.K.P.); (C.T.); (T.N.); (S.I.); (Y.T.); (S.O.); (H.U.)
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.T.); (N.T.K.P.); (C.T.); (T.N.); (S.I.); (Y.T.); (S.O.); (H.U.)
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Chiba 274-0072, Japan
| | - Chika Takano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.T.); (N.T.K.P.); (C.T.); (T.N.); (S.I.); (Y.T.); (S.O.); (H.U.)
| | - Takahiro Namiki
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.T.); (N.T.K.P.); (C.T.); (T.N.); (S.I.); (Y.T.); (S.O.); (H.U.)
| | - Shun Ito
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.T.); (N.T.K.P.); (C.T.); (T.N.); (S.I.); (Y.T.); (S.O.); (H.U.)
| | - Yoshinori Takeda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.T.); (N.T.K.P.); (C.T.); (T.N.); (S.I.); (Y.T.); (S.O.); (H.U.)
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.T.); (N.T.K.P.); (C.T.); (T.N.); (S.I.); (Y.T.); (S.O.); (H.U.)
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.T.); (N.T.K.P.); (C.T.); (T.N.); (S.I.); (Y.T.); (S.O.); (H.U.)
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.T.); (N.T.K.P.); (C.T.); (T.N.); (S.I.); (Y.T.); (S.O.); (H.U.)
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.T.); (N.T.K.P.); (C.T.); (T.N.); (S.I.); (Y.T.); (S.O.); (H.U.)
| |
Collapse
|
4
|
Ugbaja SC, Omerigwe SA, Ndlovu SMZ, Ngcobo M, Gqaleni N. Evaluating the Efficacy of Repurposed Antiretrovirals in Hepatitis B Virus Treatment: A Narrative Review of the Pros and Cons. Int J Mol Sci 2025; 26:925. [PMID: 39940695 PMCID: PMC11817041 DOI: 10.3390/ijms26030925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Human immunodeficiency virus (HIV) and hepatitis B virus (HBV) continue to be global public health issues. Globally, about 39.9 million persons live with HIV in 2023, according to the Joint United Nations Programme on HIV/AIDS (UNAIDS) 2024 Fact Sheet. Consequently, the World Health Organisation (WHO) reported that about 1.5 million new cases of HBV occur, with approximately 820 thousand mortalities yearly. Conversely, the lower percentage of HBV (30%) cases that receive a diagnosis is a setback in achieving the WHO 2030 target for zero HBV globally. This has necessitated a public health concern to repurpose antiretroviral (ARV) drugs for the treatment of HBV diseases. This review provides an introductory background, including the pros and cons of repurposing antiretrovirals (ARVs) for HBV treatment. We examine the similarities in replication mechanisms between HIV and HBV. We further investigate some clinical studies and trials of co-infected and mono-infected patients with HIV-HBV. The topical keywords including repurposing ARV drugs, repurposing antiretroviral therapy, Hepatitis B drugs, HBV therapy, title, and abstracts are searched in PubMed, Web of Science, and Google Scholar. The advanced search includes the search period 2014-2024, full text, clinical trials, randomized control trials, and review. The search results filtered from 361 to 51 relevant articles. The investigations revealed that HIV and HBV replicate via a common route known as 'reverse transcription'. Clinical trial results indicate that an early initiation of ARVs, particularly with tenofovir disoproxil fumarate (TDF) as part of a regimen, significantly reduced the HBV viral load in co-infected patients. In mono-infected HBV, timely and correct precise medication is essential for HBV viral load reduction. Therefore, genetic profiling is pivotal for successful ARV drug repurposing in HBV treatment. Pharmacogenetics enables the prediction of the right dosages, specific individual responses, and reactions. This study uniquely explores the intersection of pharmacogenetics and drug repurposing for optimized HBV therapy. Additional in vivo, clinical trials, and in silico research are important for validation of the potency, optimum dosage, and safety of repurposed antiretrovirals in HBV therapy. Furthermore, a prioritization of research collaborations comprising of regulators and funders to foster clinically adopting and incorporating repurposed ARVs for HBV therapy is recommended.
Collapse
Affiliation(s)
- Samuel Chima Ugbaja
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban 4000, South Africa; (S.M.Z.N.); (M.N.)
| | - Simon Achi Omerigwe
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Saziso Malusi Zephirinus Ndlovu
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban 4000, South Africa; (S.M.Z.N.); (M.N.)
| | - Mlungisi Ngcobo
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban 4000, South Africa; (S.M.Z.N.); (M.N.)
| | - Nceba Gqaleni
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban 4000, South Africa; (S.M.Z.N.); (M.N.)
| |
Collapse
|
5
|
Allela OQB, Ghazanfari Hashemi M, Heidari SM, Kareem RA, Sameer HN, Adil M, Kalavi S. The importance of paying attention to the role of lipid-lowering drugs in controlling dengue virus infection. Virol J 2024; 21:324. [PMID: 39702248 DOI: 10.1186/s12985-024-02608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The Flaviviridae family includes the dengue virus (DENV). About half of the world's population is in danger because of the estimated 390 million infections and 96 million symptomatic cases that occur each year. An effective treatment for dengue fever (DF) does not yet exist. Therefore, a better knowledge of how viral proteins and virus-targeted medicines may exert distinct functions depending on the exact cellular region addressed may aid in creating much-needed antiviral medications. Lipids facilitate the coordination of many viral replication phases, from entrance to dissemination. In addition, flaviviruses masterfully plan a significant rearrangement of the host cell's lipid metabolism to foster the growth of new viruses. Recent research has consistently shown the significance of certain lipid classes in flavivirus infections. For instance, in DENV-infected cells, overall cellular cholesterol (CHO) levels are only a little altered, and DENV replication is significantly reduced when CHO metabolism is inhibited. Moreover, statins significantly decrease DENV serotype 2 (DENV-2) titers, indicating that CHO is a prerequisite for the dengue viral cycle. Furthermore, many Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are now being evaluated in human research. A new pharmacological target for the management of high CHO is PCSK9. Moreover, suppression of PCSK9 has been proposed as a possible defense against DENV. Numerous studies have generally recommended the use of lipid-lowering medications to suppress the DENV. As a result, we have investigated the DENV and popular treatment techniques in this research. We have also examined how lipid metabolism, cellular lipids, and lipid receptors affect DENV replication regulation. Lastly, we have looked at how different lipid-lowering medications affect the DENV. This article also discusses the treatment method's future based on its benefits and drawbacks.
Collapse
Affiliation(s)
| | | | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, 64001, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Tian P, Zhao L, Zhang G, Chen S, Zhang W, Ou M, Sun Y, Chen Y. A global lipid map of severe fever with thrombocytopenia syndrome virus infection reveals glycerophospholipids as novel prognosis biomarkers. mBio 2024; 15:e0262824. [PMID: 39535228 PMCID: PMC11633121 DOI: 10.1128/mbio.02628-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a rapidly progressing infectious disease caused by a novel bunyavirus characterized by high fever, thrombocytopenia, and multiple organ damage. While lipids play an important role in viral infections, the specific alterations in lipid metabolism during SFTSV infection remain unclear. This study aimed to elucidate the global lipid metabolic profiles of SFTS patients with mild, severe, and fatal outcomes. A total of 60 SFTS patients, consisting of 30 mild, 15 severe and 15 fatal patients, and 30 healthy controls, were enrolled for the investigation of global lipidomics in serum using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our findings revealed global alterations in the lipid signature induced by SFTSV infection and further confirmed that the glycerophospholipid metabolism pathway was profoundly affected during the progression of mild, severe, and fatal outcomes in SFTS patients. Importantly, LysoPC (20:0) and LysoPC (P-16:0) are strongly correlated with the clinical parameters of SFTSV infection. Furthermore, we demonstrated the substantial prognostic value of LysoPC (20:0) and LysoPC (P-16:0) by receiver operating characteristic (ROC) curve analysis, providing evidence for their remarkable value as prognostic biomarkers for predicting SFTS clinical outcomes. In particular, LysoPC (20:0) and LysoPC (P-16:0), along with APTT, yielded superior prognostic performance for fatal SFTS [area under the curve (AUC) = 98.4%], outperforming routine clinical parameters. Collectively, our findings revealed the lipidomic landscape after SFTSV infection, which offers new insights into the mechanisms of SFTS disease progression and suggests that targeting lipid metabolism may serve as a potential therapeutic strategy. IMPORTANCE This study systematically investigated the lipid landscape profile of SFTS-infected patients with different clinical outcomes. Our results revealed a global alteration in the lipid signature, particularly the glycerophospholipid metabolic pathway, induced by SFTSV infection. Notably, LysoPC (20:0) and LysoPC (P-16:0) presented remarkable prognostic value as novel biomarkers for SFTSV infection and may contribute to the prognosis of SFTS progression and appropriate interventions.
Collapse
Affiliation(s)
- Panpan Tian
- Department of Laboratory Medicine, Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Liwei Zhao
- Department of Laboratory Medicine, Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guiting Zhang
- Department of Laboratory Medicine, Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shixing Chen
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Wanying Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingrong Ou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yidan Sun
- Department of Laboratory Medicine, Nanjing Pukou People’s Hospital, Nanjing, Jiangsu, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Ali M, Ahmed M, Memon M, Chandio F, Shaikh Q, Parveen A, Phull AR. Preeclampsia: A comprehensive review. Clin Chim Acta 2024; 563:119922. [PMID: 39142550 DOI: 10.1016/j.cca.2024.119922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Preeclampsia (PE) is a life-threatening disease of pregnancy and a prominent cause of neonatal and maternal mortality and morbidity. PE affects approximately 5-10% of pregnancies worldwide, posing significant risks to perinatal and maternal health. It is characterized by a variety of interconnected pathological cascades contributing to the stimulation of intravascular inflammation, oxidative stress (OS), endothelial cell activation, and syncytiotrophoblast stress that converge on a common pathway, ultimately resulting in disease progression. The present study was designed and executed to review the existing scientific literature, specifically focusing on the etiology (gestational diabetes mellitus and maternal obesity, insulin resistance, metabolic syndrome, maternal infection, periodontal disease, altered microbiome, and genetics), clinical presentations (hypertension, blood disorders, proteinuria, hepatic dysfunction, renal dysfunction, pulmonary edema, cardiac dysfunction, fetal growth restrictions, and eclampsia), therapeutic clinical biomarkers (creatinine, albuminuria, and cystatin C) along with their associations and mechanisms in PE. In addition, this study provides insights into the potential of nanomedicines for targeting these mechanisms for PE management and treatment. Inflammation, OS, proteinuria, and an altered microbiome are prominent biomarkers associated with progression and PE-related pathogenesis. Understanding the molecular mechanisms, exploring suitable markers, targeted interventions, comprehensive screening, and holistic strategies are critical to decreasing the incidence of PE and promoting maternal-fetal well-being. The present study comprehensively reviewed the etiology, clinical presentations, therapeutic biomarkers, and preventive potential of nanomedicines in the treatment and management of PE.
Collapse
Affiliation(s)
- Majida Ali
- Department of Gynecology and Obstetrics, Shaikh Zaid Women Hospital Larkana, Shaheed Mohtarma Benazir Bhutto Medical University (SMBB) Larkana, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Jaffer Khan Jamali Road, H-8/4, Islamabad, Pakistan
| | - Mehwish Memon
- Department of Biochemistry, Ibn e Sina University, Mirpur Khas, Pakistan
| | - Fozia Chandio
- Department of Gynecology and Obstetrics, Shaikh Zaid Women Hospital Larkana, Shaheed Mohtarma Benazir Bhutto Medical University (SMBB) Larkana, Pakistan
| | - Quratulain Shaikh
- Department of Gynecology and Obstetrics, Shaikh Zaid Women Hospital Larkana, Shaheed Mohtarma Benazir Bhutto Medical University (SMBB) Larkana, Pakistan
| | - Amna Parveen
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, South Korea.
| | - Abdul-Rehman Phull
- Department of Biochemistry, Shah Abdul Latif University, Khairpur, Sindh, Pakistan.
| |
Collapse
|