1
|
Zöttl M, Bensch HM, Finn KT, Hart DW, Thorley J, Bennett NC, Braude S. Capture Order Across Social Bathyergids Indicates Similarities in Division of Labour and Spatial Organisation. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.877221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The social mole-rats of the family Bathyergidae show elaborate social organisation that may include division of labour between breeders and non-breeders as well as across non-breeders within their groups. However, comparative behavioural data across the taxa are rare and contrasts and similarities between species are poorly understood. Field studies of social bathyergids usually involve capturing all group members until the entire group is captured. Because each animal is only captured once and traps are typically placed in close proximity to active foraging areas, the order in which animals are captured provides an indication of the foraging activity of different individuals and of the spatial organisation of the group within the burrow system. Here, we compare the association of capture order with breeding status, sex, and body mass in four species and subspecies of social bathyergids, which vary in group size and represent all three social genera within the family Bathyergidae. We show that in naked and Damaraland mole-rats (Heterocephalus glaber and Fukomys damarensis), male and female breeders are captured later than non-breeders, whereas in two different subspecies of the genus Cryptomys only female breeders are captured later than non-breeders. The effect sizes vary largely and are 10 times larger in naked mole-rats as compared to Fukomys and 3–4 times larger than in Cryptomys. Among non-breeders, sex effects are notably absent in all species and body mass predicted capture order in both naked and Damaraland mole-rats. In naked mole-rats, larger non-breeders were captured earlier than smaller ones, whereas in Damaraland mole-rats intermediate-sized non-breeders were captured first. Our data suggest that there are similarities in behavioural structure and spatial organisation across all social bathyergid species, though the most pronounced differences within groups are found in naked mole-rats.
Collapse
|
2
|
Begall S, Bottermann L, Caspar KR. Self-Domestication Underground? Testing for Social and Morphological Correlates of Animal Personality in Cooperatively-Breeding Ansell’s Mole-Rats (Fukomys anselli). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.862082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ansell’s mole-rats (Fukomys anselli) are sexually dimorphic subterranean rodents that live in families consisting of a single breeding pair and their late-dispersing non-breeding offspring. Most individuals exhibit a conspicuous white head patch, which results from integumental depigmentation. Alongside other morphological, physiological, and social characteristics, skin depigmentation in these social rodents mirrors traits that presumably evolved as byproducts from selection against aggression in domestic animals, making them a potential candidate species for a self-domesticated wild mammal. Here we explored whether the expression of the white head patch, sexual dimorphism, and reproductive division of labor are reflected by different personalities in Ansell’s mole-rats. We tested locomotory activity and risk-taking as well as aggression and affiliative behavior in 51 individuals originating from nine captive families in various experimental set-ups. In line with the concept of animal personality, we recovered consistent individual responses over time. While sex had no influence on any tested variable, reproductive status was found to affect risk-taking behavior but not other personality dimensions. Discriminant function analysis revealed that family members clustered more closely together than expected by chance, suggesting that group affiliation rather than sex or social status determines behavioral profiles in this species. Finally, we failed to recover any consistent correlation between head patch expression and behavior, which conflicts with predictions of the self-domestication hypothesis. We argue that many domestication-like traits in Ansell’s mole-rat and its congeners evolved in the framework of subterranean adaptation and call for a cautious application of the self-domestication concept to wild mammals.
Collapse
|
3
|
Lutermann H. Socializing in an Infectious World: The Role of Parasites in Social Evolution of a Unique Rodent Family. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transmission of parasites between hosts is facilitated by close contact of hosts. Consequently, parasites have been proposed as an important constraint to the evolution of sociality accounting for its rarity. Despite the presumed costs associated with parasitism, the majority of species of African mole-rats (Family: Bathyergidae) are social. In fact, only the extremes of sociality (i.e., solitary and singular breeding) are represented in this subterranean rodent family. But how did bathyergids overcome the costs of parasitism? Parasite burden is a function of the exposure and susceptibility of a host to parasites. In this review I explore how living in sealed burrow systems and the group defenses that can be employed by closely related group members can effectively reduce the exposure and susceptibility of social bathyergids to parasites. Evidence suggests that this can be achieved largely by investment in relatively cheap and flexible behavioral rather than physiological defense mechanisms. This also shifts the selection pressure for parasites on successful transmission between group members rather than transmission between groups. In turn, this constrains the evolution of virulence and favors socially transmitted parasites (e.g., mites and lice) further reducing the costs of parasitism for social Bathyergidae. I conclude by highlighting directions for future research to evaluate the mechanisms proposed and to consider parasites as facilitators of social evolution not only in this rodent family but also other singular breeders.
Collapse
|
4
|
Oosthuizen MK, Bennett NC. Clocks Ticking in the Dark: A Review of Biological Rhythms in Subterranean African Mole-Rats. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.878533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological rhythms are rhythmic fluctuations of biological functions that occur in almost all organisms and on several time scales. These rhythms are generated endogenously and entail the coordination of physiological and behavioural processes to predictable, external environmental rhythms. The light-dark cycle is usually the most prominent environmental cue to which animals synchronise their rhythms. Biological rhythms are believed to provide an adaptive advantage to organisms. In the present review, we will examine the occurrence of circadian and seasonal rhythms in African mole-rats (family Bathyergidae). African mole-rats are strictly subterranean, they very rarely emerge aboveground and therefore, do not have regular access to environmental light. A key adaptation to their specialised habitat is a reduction in the visual system. Mole-rats exhibit both daily and seasonal rhythmicity in a range of behaviours and physiological variables, albeit to different degrees and with large variability. We review previous research on the entire circadian system of African mole-rats and discuss output rhythms in detail. Laboratory experiments imply that light remains the strongest zeitgeber for entrainment but in the absence of light, animals can entrain to ambient temperature rhythms. Field studies report that rhythmic daily and seasonal behaviour is displayed in their natural habitat. We suggest that ambient temperature and rainfall play an important role in the timing of rhythmic behaviour in mole-rats, and that they likely respond directly to these zeitgebers in the field rather than exhibit robust endogenous rhythms. In the light of climate change, these subterranean animals are buffered from the direct and immediate effects of changes in temperature and rainfall, partly because they do not have robust circadian rhythms, however, on a longer term they are vulnerable to changes in their food sources and dispersal abilities.
Collapse
|
5
|
Finn KT, Janse van Vuuren AK, Hart DW, Süess T, Zöttl M, Bennett NC. Seasonal Changes in Locomotor Activity Patterns of Wild Social Natal Mole-Rats (Cryptomys hottentotus natalensis). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.819393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Differences in individual locomotor activity patterns may be linked to a number of ecological factors, such as changes in ambient temperature or photoperiod. Observations on subterranean mammals suggest that they exhibit diel rhythms despite the lack of visual cues in their underground burrows, but it is unknown how seasonality and individual characteristics affect their activity. In this study we use RFID technology to monitor daily activity patterns of wild, social Natal mole-rats (Cryptomys hottentotus natalensis) during the summer and winter to investigate how their activity varies with season and whether their activity depends on individual characteristics such as body mass, sex and reproductive status. We found that in winter, individuals were more active during the time with the highest soil temperatures, whereas in summer, they showed a bimodal activity pattern during early morning and late afternoon coinciding with cooler soil temperatures. Individual characteristics, including reproductive status, did not affect general activity indicating that reproductive and non-reproductive individuals contribute equally to cooperative behaviors. We suggest that the activity patterns may be a behavioral adaptation to avoid extreme burrow temperatures and a mechanism to maintain a stable core body temperature. We highlight the advantages of RFID technology to study wild small mammal movements.
Collapse
|
6
|
Begall S, Nappe R, Hohrenk L, Schmidt TC, Burda H, Sahm A, Szafranski K, Dammann P, Henning Y. Life expectancy, family constellation and stress in giant mole-rats ( Fukomys mechowii). Philos Trans R Soc Lond B Biol Sci 2021; 376:20200207. [PMID: 33678029 DOI: 10.1098/rstb.2020.0207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Giant mole-rats (Fukomys mechowii) are remarkably long-lived subterranean rodents (maximum recorded lifespan as reported here greater than 26 years) that live in families with one reproductive pair (breeders) and their non-reproductive offspring (non-breeders). Previous studies have shown that breeders live on average approximately twice as long as non-breeders, a finding contradicting the classic trade-off between reproduction and lifespan. Because recent evidence points to the hypothalamic-pituitary-adrenal axis as playing an important role in shaping the pace of ageing in mole-rats, we analysed the influence of the social environment of giant mole-rats on intrafamilial aggression levels, indicators of long-term stress, and, ultimately, mortality. Behavioural data indicated that family constellation, especially the presence or the absence of parents, influences agonistic behaviour. As a measure of long-term stress, we established a non-invasive method of extracting and measuring cortisol from hair of giant mole-rats. Interestingly, orphaned non-breeders exhibited significantly lower levels of cortisol and lower mortality rates than did non-breeders living with both parents. Because hypercortisolism is harmful in the long-term, intrafamilial stress could help explain the earlier onset of senescence in non-breeders, resulting in a shorter lifespan. Our findings suggest that the social environment should be considered as a further factor in ageing studies involving group-living animals. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- S Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - R Nappe
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - L Hohrenk
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - T C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - H Burda
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - A Sahm
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - K Szafranski
- Core Facility Bioinformatics, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - P Dammann
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Central Animal Laboratory, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Y Henning
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Institute of Physiology, Faculty of Medicine (present address), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Social Evolution in African Mole-Rats - A Comparative Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:1-33. [PMID: 34424511 DOI: 10.1007/978-3-030-65943-1_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The African mole-rat superfamily are a unique group of subterranean rodents that are remarkable for their adaptations to a subterranean lifestyle and their range in sociality, spanning strictly solitary species to the naked mole-rat, the most social of all rodents. Widely distributed through sub-Saharan Africa their occurrence is associated with the presence of food resources in the form of underground roots, bulbs and tubers, which form their staple diet. African mole-rats have an ancient Oligocene/Eocene origin, with the naked mole-rat, the extant species with the earliest divergence from the common ancestor of the clade. As a consequence of its early evolution the naked mole-rat appears to have acquired many extraordinary biological features, even when compared with other mole-rats. Molecular phylogenies indicate that complex sociality and cooperative breeding has been convergently gained and/or lost more than once among African mole-rats, making them a fascinating group for comparative studies of social evolution. Ultimately, ecological constraints on digging and finding food have played a role in increasing cooperative behavior and social complexity, from what was most likely a monogamous ancestor living in family groups. Phylogenetically controlled comparisons suggest that proximate control of their lifestyle shows both conservation and divergence in the underlying mechanisms.
Collapse
|
8
|
Gilbert JD, Rossiter SJ, Faulkes CG. The relationship between individual phenotype and the division of labour in naked mole-rats: it's complicated. PeerJ 2020; 8:e9891. [PMID: 33062418 PMCID: PMC7531346 DOI: 10.7717/peerj.9891] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022] Open
Abstract
Background The naked mole-rat (Heterocephalus glaber) is among the most social mammals on the planet, living in eusocial groups of up to 300 individuals that contain a single reproductive female and up to three reproductive males. A critical aspect of their complex social system is the division of labour that allows non-breeders to form an effective workforce. Age- or weight-based polyethisms are widely cited as explanations for how labour is divided, but evidence in support of these hypotheses has been equivocal. Methods To assess the extent to which individual working behaviour is determined by sex, age, weight and social rank, we studied the behaviours of 103 animals from eight captive colonies. We performed focal sampling and ran mixed-effects models to assess which factors explained variation in working behaviour during six ten-minute observation periods per individual. Results Contrary to widely-held beliefs, we found that working behaviour did not decrease linearly with weight, although polynomial regressions indicated younger and medium-sized individuals worked most frequently, while high-ranking individuals worked for the shortest periods of time. Working behaviour and its relationship with individual characteristics also varied between colonies. Conclusions While age- or size-based polyethisms may have some influence on working behaviour, we argue that other characteristics of the individual and colony are also important. In particular, the interactions of individual, social and environmental factors must be considered in order to understand the emergence and effectiveness of the division of labour that is so critical to many social organisms.
Collapse
Affiliation(s)
- James D Gilbert
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Chris G Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
9
|
Schielke CKM, Burda H, Henning Y, Okrouhlík J, Begall S. Higher resting metabolic rate in long-lived breeding Ansell's mole-rats ( Fukomys anselli). Front Zool 2017; 14:45. [PMID: 29018488 PMCID: PMC5610445 DOI: 10.1186/s12983-017-0229-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/14/2017] [Indexed: 01/27/2023] Open
Abstract
Background Reproduction is an energetically expensive process that supposedly impairs somatic integrity in the long term, because resources are limited and have to be allocated between reproduction and somatic maintenance, as predicted by the life history trade-off model. The consequence of reduced investment in somatic maintenance is a gradual deterioration of function, i.e. senescence. However, this classical trade-off model gets challenged by an increasing number of contradicting studies. Here we report about an animal model, which adds more complexity to the ongoing debate. Ansell’s mole-rats are long-lived social subterranean rodents with only the founder pair reproducing, while most of their offspring remain in the parental burrow system and do not breed. Despite of a clear reproductive trade-off, breeders live up to twice as long as non-breeders, a unique feature amongst mammals. Methods We investigated mass-specific resting metabolic rates (msRMR) of breeders and non-breeders to gain information about the physiological basis underlying the reproduction-associated longevity in Ansell’s mole-rats. We assessed the thermoneutral zone (TNZ) for breeders and non-breeders separately by means of indirect calorimetry. We applied generalized linear mixed-effects models for repeated measurements using the msRMR in the respective TNZs. Results TNZ differed between reproductive and non-reproductive Ansell’s mole-rats. Contrary to classical aging models, the shorter-lived non-breeders had significantly lower msRMR within the thermoneutral zone compared to breeders. Conclusion This is the first study reporting a positive correlation between msRMR and lifespan based on reproductive status. Our finding contradicts common aging theories, but supports recently introduced models which do not necessarily link reproductive trade-offs to lifespan reduction.
Collapse
Affiliation(s)
| | - Hynek Burda
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| | | | - Jan Okrouhlík
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Sabine Begall
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Šklíba J, Lövy M, Burda H, Šumbera R. Variability of space-use patterns in a free living eusocial rodent, Ansell's mole-rat indicates age-based rather than caste polyethism. Sci Rep 2016; 6:37497. [PMID: 27922127 PMCID: PMC5138616 DOI: 10.1038/srep37497] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/10/2016] [Indexed: 11/15/2022] Open
Abstract
Eusocial species of African mole-rats live in groups cooperating on multiple tasks and employing division of labour. In captivity, individuals of the same group differ in cooperative contribution as well as in preference for a particular task. Both can be viewed as polyethism. However, little information is available from free-ranging mole-rats, which live in large burrow systems. We made an attempt to detect polyethism in the free-living Ansell's mole-rat (Fukomys anselli) as differences in individuals' space-use patterns. We radio-tracked 17 adults from five groups. Large individuals, including breeding males, spent more time inside the nest than smaller individuals. Breeding females were more often located <10 m from the nest in comparison to non-breeding females, who were relatively more often located 30-90 m and exclusively >90 m from the nest. One non-breeding female even conducted a brief intrusion into a neighbouring group's territory via an open tunnel connection. A significant part of the variability in mole-rat space-use patterns was explained by body mass which is probably related to age in this species. This result can therefore be attributed to age polyethism. There was no apparent discontinuity in the space-use patterns of non-breeders that would indicate existence of castes.
Collapse
Affiliation(s)
- Jan Šklíba
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, Branišovská 1160, 370 05 České Budějovice, Czech Republic
| | - Matěj Lövy
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Hynek Burda
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
11
|
Rimbach R, Willigenburg R, Schoepf I, Yuen CH, Pillay N, Schradin C. Young But Not Old Adult African Striped Mice Reduce Their Activity in the Dry Season When Food Availability is Low. Ethology 2016. [DOI: 10.1111/eth.12527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rebecca Rimbach
- School of Animal, Plant & Environmental Sciences; University of the Witwatersrand; Johannesburg South Africa
| | - Remco Willigenburg
- School of Animal, Plant & Environmental Sciences; University of the Witwatersrand; Johannesburg South Africa
- HAS Den Bosch; University of Applied Sciences; Den Bosch The Netherlands
| | - Ivana Schoepf
- School of Animal, Plant & Environmental Sciences; University of the Witwatersrand; Johannesburg South Africa
| | - Chi Hang Yuen
- School of Animal, Plant & Environmental Sciences; University of the Witwatersrand; Johannesburg South Africa
| | - Neville Pillay
- School of Animal, Plant & Environmental Sciences; University of the Witwatersrand; Johannesburg South Africa
| | - Carsten Schradin
- School of Animal, Plant & Environmental Sciences; University of the Witwatersrand; Johannesburg South Africa
- IPHC; UNISTRA; CNRS; Strasbourg France
| |
Collapse
|
12
|
Šklíba J, Lövy M, Hrouzková E, Kott O, Okrouhlík J, Šumbera R. Social and Environmental Influences on Daily Activity Pattern in Free-Living Subterranean Rodents. J Biol Rhythms 2014; 29:203-214. [DOI: 10.1177/0748730414526358] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Predictable daily activity patterns have been detected repeatedly even in mammals living in stable environments, as is the case for subterranean rodents. Whereas studies on activity of these rodents under laboratory conditions almost exclusively have concerned themselves with the influence of light, many field studies have revealed signs of an association between the activity pattern and daily fluctuations of temperature under the ground. This would assume that behavioral thermoregulation is probably involved. The only exceptions to the relationship between temperature and activity are 2 eusocial mole-rats of the genus Fukomys (Bathyergidae, Rodentia), which indicates that activity patterns could be affected also by social cues. To better understand how social and environmental factors influence the activity pattern in a eusocial mole-rat, we monitored the outside-nest activity in another species of this genus, the Ansell’s mole-rat ( Fukomys anselli), which has a relatively small body mass, high conductance, and more superficially situated burrows. Its daily activity had 1 prominent peak (around 1400 h), and it was tightly correlated with the temperature measured at depth of foraging burrows. Since F. anselli has high thermoregulatory requirements to maintain stable body temperature below the lower critical temperature, we conclude that the observed pattern is probably the result of minimizing the cost of thermoregulation. There were no significant differences in the daily activity patterns of breeding males and females and nonbreeders. Members of the same family group tended to have more similar activity patterns, but consistent activity synchronization between individuals was not proven. From the comparison of available data on all subterranean rodents, we assume that social cues in communally nesting mole-rats may disrupt (mask) temperature-related daily activity rhythms but probably only if the additional cost of thermoregulation is not too high, as it likely is in the Ansell’s mole-rat.
Collapse
Affiliation(s)
- Jan Šklíba
- Department of Zoology, Faculty of Science, University of South Bohemia, Cˇeské Budeˇjovice, Czech Republic
| | - Matěj Lövy
- Department of Zoology, Faculty of Science, University of South Bohemia, Cˇeské Budeˇjovice, Czech Republic
| | - Ema Hrouzková
- Department of Zoology, Faculty of Science, University of South Bohemia, Cˇeské Budeˇjovice, Czech Republic
| | - Ondřej Kott
- Department of Zoology, Faculty of Science, University of South Bohemia, Cˇeské Budeˇjovice, Czech Republic
| | - Jan Okrouhlík
- Department of Zoology, Faculty of Science, University of South Bohemia, Cˇeské Budeˇjovice, Czech Republic
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, Cˇeské Budeˇjovice, Czech Republic
| |
Collapse
|
13
|
Novikov EA, Burda G. Ecological and evolutionary preconditions of extended longevity in subterranean rodents. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s2079086413040051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Lövy M, Sklíba J, Sumbera R. Spatial and temporal activity patterns of the free-living giant mole-rat (Fukomys mechowii), the largest social bathyergid. PLoS One 2013; 8:e55357. [PMID: 23383166 PMCID: PMC3559640 DOI: 10.1371/journal.pone.0055357] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/27/2012] [Indexed: 11/29/2022] Open
Abstract
Despite the considerable attention devoted to the biology of social species of African mole-rats (Bathyergidae, Rodentia), knowledge is lacking about their behaviour under natural conditions. We studied activity of the largest social bathyergid, the giant mole-rat Fukomys mechowii, in its natural habitat in Zambia using radio-telemetry. We radio-tracked six individuals during three continuous 72-h sessions. Five of these individuals, including a breeding male, belonged to a single family group; the remaining female was probably a solitary disperser. The non-breeders of the family were active (i.e. outside the nest) 5.8 hours per 24h-day with the activity split into 6.5 short bouts. The activity was more concentrated in the night hours, when the animals also travelled longer distances from the nest. The breeding male spent only 3.2 hours per day outside the nest, utilizing less than 20% of the whole family home range. The dispersing female displayed a much different activity pattern than the family members. Her 8.0 hours of outside-nest activity per day were split into 4.6 bouts which were twice as long as in the family non-breeders. Her activity peak in the late afternoon coincided with the temperature maximum in the depth of 10 cm (roughly the depth of the foraging tunnels). Our results suggest that the breeding individuals (at least males) contribute very little to the work of the family group. Nevertheless, the amount of an individual's activity and its daily pattern are probably flexible in this species and can be modified in response to actual environmental and social conditions.
Collapse
Affiliation(s)
- Matěj Lövy
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | | | | |
Collapse
|