1
|
Thorley J, Bensch HM, Finn K, Clutton-Brock T, Zöttl M. Damaraland mole-rats do not rely on helpers for reproduction or survival. Evol Lett 2023; 7:203-215. [PMID: 37475748 PMCID: PMC10355180 DOI: 10.1093/evlett/qrad023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/23/2023] [Accepted: 05/05/2023] [Indexed: 07/22/2023] Open
Abstract
In eusocial invertebrates and obligate cooperative breeders, successful reproduction is dependent on assistance from non-breeding group members. Although naked (Heterocephalus glaber) and Damaraland mole-rats (Fukomys damarensis) are often described as eusocial and their groups are suggested to resemble those of eusocial insects more closely than groups of any other vertebrate, the extent to which breeding individuals benefit from the assistance of non-breeding group members is unclear. Here we show that, in wild Damaraland mole-rats, prospective female breeders usually disperse and settle alone in new burrow systems where they show high survival rates and remain in good body condition-often for several years-before being joined by males. In contrast to many obligate cooperative vertebrates, pairs reproduced successfully without non-breeding helpers, and the breeding success of experimentally formed pairs was similar to that of larger, established groups. Though larger breeding groups recruited slightly more pups than smaller groups, adult survival was independent of group size and group size had mixed effects on the growth of non-breeders. Our results suggest that Damaraland mole-rats do not need groups to survive and that cooperative breeding in the species is not obligate as pairs can-and frequently do-reproduce without the assistance of helpers. While re-emphasizing the importance of ecological constraints on dispersal in social mole-rats, the mixed effects of group size in our study suggest that indirect benefits accrued through cooperative behavior may have played a less prominent role in the evolution of mole-rat group-living than previously thought.
Collapse
Affiliation(s)
- Jack Thorley
- Corresponding author: Department of Zoology, Downing Street, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom.
| | | | - Kyle Finn
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus, South Africa
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Tim Clutton-Brock
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus, South Africa
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Markus Zöttl
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus, South Africa
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Bondareva O, Petrova T, Bodrov S, Gavrilo M, Smorkatcheva A, Abramson N. How voles adapt to subterranean lifestyle: Insights from RNA-seq. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1085993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Life under the earth surface is highly challenging and associated with a number of morphological, physiological and behavioral modifications. Subterranean niche protects animals from predators, fluctuations in environmental parameters, but is characterized by high levels of carbon dioxide and low levels of oxygen and implies high energy requirements associated with burrowing. Moreover, it lacks most of the sensory inputs available above ground. The current study describes results from RNA-seq analysis of four subterranean voles from subfamily Arvicolinae: Prometheomys schaposchnikowi, Ellobius lutescens, Terricola subterraneus, and Lasiopodomys mandarinus. Original RNA-seq data were obtained for eight species, for nine species, SRA data were downloaded from the NCBI SRA database. Additionally assembled transcriptomes of Mynomes ochrogaster and Cricetulus griseus were included in the analysis. We searched for the selection signatures and parallel amino acid substitutions in a total of 19 species. Even within this limited data set, we found significant changes of dN/dS ratio by free-ratio model analysis for subterranean Arvicolinae. Parallel substitutions were detected in genes RAD23B and PYCR2. These genes are associated with DNA repair processes and response to oxidative stress. Similar substitutions were discovered in the RAD23 genes for highly specialized subterranean Heterocephalus glaber and Fukomys damarensis. The most pronounced signatures of adaptive evolution related to subterranean niche within species of Arvicolinae subfamily were detected for Ellobius lutescens. Our results suggest that genomic adaptations can occur very quickly so far as the amount of selection signatures was found to be compliant with the degree of specialization to the subterranean niche and independent from the evolutionary age of the taxon. We found that the number of genomic signatures of selection does not depend on the age of the taxon, but is positively correlated with the degree of specialization to the subterranean niche.
Collapse
|
3
|
Bondareva O, Genelt-Yanovskiy E, Petrova T, Bodrov S, Smorkatcheva A, Abramson N. Signatures of Adaptation in Mitochondrial Genomes of Palearctic Subterranean Voles (Arvicolinae, Rodentia). Genes (Basel) 2021; 12:1945. [PMID: 34946894 PMCID: PMC8701191 DOI: 10.3390/genes12121945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
This study evaluates signatures of selection in the evolution of the mitochondrial DNA of voles, subfamily Arvicolinae, during the colonization of subterranean environments. The comparative sequence analysis of mitochondrial protein-coding genes of eight subterranean vole species (Prometheomys schaposchnikowi, three species of the genus Ellobius: Ellobius talpinus, Ellobius fuscocapillus and Ellobius lutescens, two species of the genus Terricola: Terricola subterraneus and Terricola daghestanicus, Lasiopodomys mandarinus, and Hyperacrius fertilis) and their closest aboveground relatives was applied using codon-substitution models. The highest number of selection signatures was detected in genes ATP8 and CYTB. The relaxation of selection was observed in most mitochondrial DNA protein-coding genes for subterranean species. The largest amount of relaxed genes is discovered in mole voles (genus Ellobius). The number of selection signatures was found to be independent of the evolutionary age of the lineage but fits the degree of specialization to the subterranean niche. The common trends of selective pressures were observed among the evolutionary ancient and highly specialized subterranean rodent families and phylogenetically young lineages of voles. It suggests that the signatures of adaptation in individual mitochondrial protein-coding genes associated with the colonization of the subterranean niche may appear within a rather short evolutionary timespan.
Collapse
Affiliation(s)
- Olga Bondareva
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute RAS, 199034 Saint-Petersburg, Russia; (E.G.-Y.); (T.P.); (S.B.)
| | - Evgeny Genelt-Yanovskiy
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute RAS, 199034 Saint-Petersburg, Russia; (E.G.-Y.); (T.P.); (S.B.)
| | - Tatyana Petrova
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute RAS, 199034 Saint-Petersburg, Russia; (E.G.-Y.); (T.P.); (S.B.)
| | - Semen Bodrov
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute RAS, 199034 Saint-Petersburg, Russia; (E.G.-Y.); (T.P.); (S.B.)
| | - Antonina Smorkatcheva
- Department of Vertebrate Zoology, Biology Faculty, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia;
| | - Natalia Abramson
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute RAS, 199034 Saint-Petersburg, Russia; (E.G.-Y.); (T.P.); (S.B.)
| |
Collapse
|
4
|
Streltsov VV, Smorkatcheva AV. Social regulation of female reproduction in the steppe lemming, Lagurus lagurus. MAMMAL RES 2021. [DOI: 10.1007/s13364-021-00573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
de Barros FC, Grizante MB, Zampieri FAM, Kohlsdorf T. Peculiar relationships among morphology, burrowing performance and sand type in two fossorial microteiid lizards. ZOOLOGY 2020; 144:125880. [PMID: 33310388 DOI: 10.1016/j.zool.2020.125880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
Associations among ecology, morphology and locomotor performance have been intensively investigated in several vertebrate lineages. Knowledge on how phenotypes evolve in natural environments likely benefits from identification of circumstances that might expand current ecomorphological equations. In this study, we used two species of Calyptommatus lizards from Brazilian Caatingas to evaluate if specific soil properties favor burrowing performance. As a derived prediction, we expected that functional associations would be easily detectable at the sand condition that favors low-resistance burrowing. We collected two endemic lizards and soil samples in their respective localities, obtained morphological data and recorded performance of both species in different sand types. As a result, the two species burrowed faster at the fine and homogeneous sand, the only condition where we detected functional associations between morphology and locomotion. In this sand type, lizards from both Calyptommatus species that have higher trunks and more concave heads were the ones that burrowed faster, and these phenotypic traits did not morphologically discriminate the two Calyptommatus populations studied. We discuss that integrative approaches comprising manipulation of environmental conditions clearly contribute to elucidate processes underlying phenotypic evolution in fossorial lineages.
Collapse
Affiliation(s)
- Fábio C de Barros
- Department of Biology, FFCLRP, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil; Department of Ecology and Evolutionary Biology, ICAQF, Federal University of São Paulo, Rua Prof. Artur Riedel, 275, Diadema, SP, 09972-270, Brazil.
| | - Mariana B Grizante
- Department of Biology, FFCLRP, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil; Instituto Dante Pazzanese de Cardiologia, Brazil
| | - Felipe A M Zampieri
- Department of Biology, FFCLRP, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Tiana Kohlsdorf
- Department of Biology, FFCLRP, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil.
| |
Collapse
|
6
|
Bakloushinskaya I, Lyapunova EA, Saidov AS, Romanenko SA, O’Brien PC, Serdyukova NA, Ferguson-Smith MA, Matveevsky S, Bogdanov AS. Rapid chromosomal evolution in enigmatic mammal with XX in both sexes, the Alay mole vole Ellobiusalaicus Vorontsov et al., 1969 (Mammalia, Rodentia). COMPARATIVE CYTOGENETICS 2019; 13:147-177. [PMID: 31275526 PMCID: PMC6597615 DOI: 10.3897/compcytogen.v13i2.34224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/28/2019] [Indexed: 06/01/2023]
Abstract
Evolutionary history and taxonomic position for cryptic species may be clarified by using molecular and cytogenetic methods. The subterranean rodent, the Alay mole vole Ellobiusalaicus Vorontsov et al., 1969 is one of three sibling species constituting the subgenus Ellobius Fischer, 1814, all of which lost the Y chromosome and obtained isomorphic XX sex chromosomes in both males and females. E.alaicus is evaluated by IUCN as a data deficient species because their distribution, biology, and genetics are almost unknown. We revealed specific karyotypic variability (2n = 52-48) in E.alaicus due to different Robertsonian translocations (Rbs). Two variants of hybrids (2n = 53, different Rbs) with E.tancrei Blasius, 1884 were found at the Northern slopes of the Alay Ridge and in the Naryn district, Kyrgyzstan. We described the sudden change in chromosome numbers from 2n = 50 to 48 and specific karyotype structure for mole voles, which inhabit the entrance to the Alay Valley (Tajikistan), and revealed their affiliation as E.alaicus by cytochrome b and fragments of nuclear XIST and Rspo1 genes sequencing. To date, it is possible to expand the range of E.alaicus from the Alay Valley (South Kyrgyzstan) up to the Ferghana Ridge and the Naryn Basin, Tien Shan at the north-east and to the Pamir-Alay Mountains (Tajikistan) at the west. The closeness of E.tancrei and E.alaicus is supported, whereas specific chromosome and molecular changes, as well as geographic distribution, verified the species status for E.alaicus. The case of Ellobius species accented an unevenness in rates of chromosome and nucleotide changes along with morphological similarity, which is emblematic for cryptic species.
Collapse
Affiliation(s)
- Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| | - Elena A. Lyapunova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| | - Abdusattor S. Saidov
- Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe, TajikistanPavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of TajikistanDushanbeTajikistan
| | - Svetlana A. Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch RAS, Novosibirsk, RussiaInstitute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of SciencesNovosibirskRussia
- Novosibirsk State University, Novosibirsk, RussiaNovosibirsk State UniversityNovosibirskRussia
| | - Patricia C.M. O’Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UKUniversity of CambridgeCambridgeUnited Kingdom
| | - Natalia A. Serdyukova
- Institute of Molecular and Cellular Biology, Siberian Branch RAS, Novosibirsk, RussiaInstitute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of SciencesNovosibirskRussia
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UKUniversity of CambridgeCambridgeUnited Kingdom
| | - Sergey Matveevsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, RussiaVavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Alexey S. Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
7
|
Hing ML, Klanten OS, Wong MYL, Dowton M. Drivers of sociality in Gobiodon fishes: An assessment of phylogeny, ecology and life-history. Mol Phylogenet Evol 2019; 137:263-273. [PMID: 31125658 DOI: 10.1016/j.ympev.2019.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
Abstract
What drives the evolution of sociality in animals? Many robust studies in terrestrial organisms have pointed toward various kinship-based, ecological and life-history traits or phylogenetic constraint which have played a role in the evolution of sociality. These traits are not mutually exclusive and the exact combination of traits is likely taxon-specific. Phylogenetic comparative analyses have been instrumental in identifying social lineages and comparing various traits with non-social lineages to give broad evolutionary perspectives on the development of sociality. Few studies have attempted this approach in marine vertebrate systems. Social marine fishes are particularly interesting because many have a pelagic larval phase and non-conventional life-history strategies (e.g. bi-directional sex-change) not often observed in terrestrial animals. Such strategies provide novel insights into terrestrially-derived theories of social evolution. Here, we assess the strength of the phylogenetic signal of sociality in the Gobiodon genus with Pagel's lambda and Blomberg's K parameters. We found some evidence of a phylogenetic signal of sociality, but factors other than phylogenetic constraint also have a strong influence on the extant social state of each species. We then use phylogenetic generalized least squares analyses to examine several ecological and life-history traits that may have influenced the evolution of sociality in the genus. We found an interaction of habitat size and fish length was the strongest predictor of sociality. Sociality in larger species was more dependent on coral size than in smaller species, but smaller species were more social overall, regardless of coral size. Finally, we comment on findings regarding the validity of the species G. spilophthalmus which arose during the course of our research. These findings in a group of marine fishes add a unique perspective on the evolution of sociality to the excellent terrestrial work conducted in this field.
Collapse
Affiliation(s)
- Martin L Hing
- Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Australia.
| | - O Selma Klanten
- Fish Ecology Laboratory, School of Life Sciences, University of Technology Sydney, Australia
| | - Marian Y L Wong
- Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Australia
| | - Mark Dowton
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
| |
Collapse
|
8
|
Matějů J, Kratochvíl L, Pavelková Z, Pavelková Řičánková V, Vohralík V, Němec P. Absolute, not relative brain size correlates with sociality in ground squirrels. Proc Biol Sci 2016; 283:20152725. [PMID: 27009231 DOI: 10.1098/rspb.2015.2725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/24/2016] [Indexed: 11/12/2022] Open
Abstract
The social brain hypothesis (SBH) contends that cognitive demands associated with living in cohesive social groups favour the evolution of large brains. Although the correlation between relative brain size and sociality reported in various groups of birds and mammals provides broad empirical support for this hypothesis, it has never been tested in rodents, the largest mammalian order. Here, we test the predictions of the SBH in the ground squirrels from the tribe Marmotini. These rodents exhibit levels of sociality ranging from solitary and single-family female kin groups to egalitarian polygynous harems but feature similar ecologies and life-history traits. We found little support for the association between increase in sociality and increase in relative brain size. Thus, sociality does not drive the evolution of encephalization in this group of rodents, a finding inconsistent with the SBH. However, body mass and absolute brain size increase with sociality. These findings suggest that increased social complexity in the ground squirrels goes hand in hand with larger body mass and brain size, which are tightly coupled to each other.
Collapse
Affiliation(s)
- Jan Matějů
- Museum Karlovy Vary, Pod Jelením skokem 30, Karlovy Vary 360 01, Czech Republic
| | - Lukáš Kratochvíl
- Faculty of Science, Charles University in Prague, Viničná 7, Praha 2 128 44, Czech Republic
| | - Zuzana Pavelková
- Faculty of Science, Charles University in Prague, Viničná 7, Praha 2 128 44, Czech Republic
| | - Věra Pavelková Řičánková
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - Vladimír Vohralík
- Faculty of Science, Charles University in Prague, Viničná 7, Praha 2 128 44, Czech Republic
| | - Pavel Němec
- Faculty of Science, Charles University in Prague, Viničná 7, Praha 2 128 44, Czech Republic
| |
Collapse
|
9
|
Martínez PA, Bidau CJ. A re-assessment of Rensch's rule in tuco-tucos (Rodentia: Ctenomyidae: Ctenomys) using a phylogenetic approach. Mamm Biol 2016. [DOI: 10.1016/j.mambio.2014.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Noonan MJ, Newman C, Buesching CD, Macdonald DW. Evolution and function of fossoriality in the Carnivora: implications for group-living. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Sobrero R, Inostroza-Michael O, Hernández CE, Ebensperger LA. Phylogeny modulates the effects of ecological conditions on group living across hystricognath rodents. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|