1
|
Amorim J, Abreu I, Rodrigues P, Peixoto D, Pinheiro C, Saraiva A, Carvalho AP, Guimarães L, Oliva-Teles L. Lymnaea stagnalis as a freshwater model invertebrate for ecotoxicological studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:11-28. [PMID: 30877957 DOI: 10.1016/j.scitotenv.2019.03.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/23/2019] [Accepted: 03/03/2019] [Indexed: 05/14/2023]
Abstract
Lymnaea stagnalis, also referred to as great or common pond snail, is an abundant and widespread invertebrate species colonizing temperate limnic systems. Given the species importance, studies involving L. stagnalis have the potential to produce scientifically relevant information, leading to a better understanding of the damage caused by aquatic contamination, as well as the modes of action of toxicants. Lymnaea stagnalis individuals are easily maintained in laboratory conditions, with a lifespan of about two years. The snails are hermaphrodites and sexual maturity occurs about three months after egg laying. Importantly, they can produce a high number of offspring all year round and are considered well suited for use in investigations targeting the identification of developmental and reproductive impairments. The primary aims of this review were two-fold: i) to provide an updated and insightful compilation of established toxicological measures determined in both chronic and acute toxicity assays, as useful tool to the design and development of future research; and ii) to provide a state of the art related to direct toxicant exposure and its potentially negative effects on this species. Relevant and informative studies were analysed and discussed. Knowledge gaps in need to be addressed in the near future were further identified.
Collapse
Affiliation(s)
- João Amorim
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| | - Isabel Abreu
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Pedro Rodrigues
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Diogo Peixoto
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Carlos Pinheiro
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Aurélia Saraiva
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - António Paulo Carvalho
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Laura Guimarães
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| | - Luis Oliva-Teles
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
2
|
Levine KE, Young DJ, Afton SE, Harrington JM, Essader AS, Weber FX, Fernando RA, Thayer K, Hatch EE, Robinson VG, Waidyanatha S. Development, validation, and application of an ultra-performance liquid chromatography-sector field inductively coupled plasma mass spectrometry method for simultaneous determination of six organotin compounds in human serum. Talanta 2015; 140:115-121. [PMID: 26048832 DOI: 10.1016/j.talanta.2015.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/15/2015] [Indexed: 11/29/2022]
Abstract
Organotin compounds (OTCs) are heavily employed by industry for a wide variety of applications, including the production of plastics and as biocides. Reports of environmental prevalence, differential toxicity between OTCs, and poorly characterized human exposure have fueled the demand for sensitive, selective speciation methods. The objective of this investigation was to develop and validate a rapid, sensitive, and selective analytical method for the simultaneous determination of a suite of organotin compounds, including butyl (mono-, di-, and tri-substituted) and phenyl (mono-, di-, and tri-substituted) species in human serum. The analytical method utilized ultra-performance liquid chromatography (UPLC) coupled with sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). The small (sub-2 µm) particle size of the UPLC column stationary phase and the sensitivity of the SF-ICP-MS enabled separation and sensitive determination of the analyte suite with a runtime of approximately 3 min. Validation activities included demonstration of method linearity over the concentration range of approximately 0.250-13.661 ng mL(-1), depending on the species; intraday precision of less than 21%, interday precision of less than 18%, intraday accuracy of -5.3% to 19%, and interday accuracy of -14% to 15% for all species; specificity, and matrix impact. In addition, sensitivity, and analyte stability under different storage scenarios were evaluated. Analyte stability was found to be limited for most species in freezer, refrigerator, and freeze-thaw conditions. The validated method was then applied for the determination of the OTCs in human serum samples from women participating in the Snart-Foraeldre/MiljØ (Soon-Parents/Environment) Study. The concentration of each OTC ranged from below the experimental limit of quantitation to 10.929 ng tin (Sn) mL(-1) serum. Speciation values were confirmed by a total Sn analysis.
Collapse
Affiliation(s)
- Keith E Levine
- RTI International, Research Triangle Park, NC, United States
| | - Daniel J Young
- RTI International, Research Triangle Park, NC, United States
| | - Scott E Afton
- RTI International, Research Triangle Park, NC, United States
| | | | - Amal S Essader
- RTI International, Research Triangle Park, NC, United States
| | - Frank X Weber
- RTI International, Research Triangle Park, NC, United States
| | | | - Kristina Thayer
- Division of National Toxicology Program, NIEHS, Research Triangle Park, NC, United States
| | - Elizabeth E Hatch
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Veronica G Robinson
- Division of National Toxicology Program, NIEHS, Research Triangle Park, NC, United States
| | - Suramya Waidyanatha
- Division of National Toxicology Program, NIEHS, Research Triangle Park, NC, United States
| |
Collapse
|
3
|
Giusti A, Leprince P, Mazzucchelli G, Thomé JP, Lagadic L, Ducrot V, Joaquim-Justo C. Proteomic Analysis of the Reproductive Organs of the Hermaphroditic Gastropod Lymnaea stagnalis Exposed to Different Endocrine Disrupting Chemicals. PLoS One 2013; 8:e81086. [PMID: 24363793 PMCID: PMC3867191 DOI: 10.1371/journal.pone.0081086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/08/2013] [Indexed: 01/27/2023] Open
Abstract
Many studies have reported perturbations of mollusc reproduction following exposure to low concentrations (ng/L range) of endocrine disrupting chemicals (EDCs). However, the mechanisms of action of these molecules on molluscs are still poorly understood. Investigation of the modifications of protein expression in organisms exposed to chemicals using proteomic methods can provide a broader and more comprehensive understanding of adverse impacts of pollution on organisms than conventional biochemical biomarkers (e.g., heat-shock proteins, metallothioneins, GST, EROD). In this study we have investigated the impacts of four chemicals, which exhibit different endocrine disrupting properties in vertebrates, on the proteome of the hermaphroditic freshwater pulmonate gastropod Lymnaea stagnalis after 21 days of exposure. Testosterone, tributyltin, chlordecone and cyproterone acetate were chosen as tested compounds as they can induce adverse effects on the reproduction of this snail. The 2D-DIGE method was used to identify proteins whose expression was affected by these compounds. In addition to modifying the expression of proteins involved in the structure and function of the cytoskeleton, chemicals had impacts on the expression of proteins involved in the reproduction of L. stagnalis. Exposure to 19.2 µg/L of chlordecone increased the abundance of ovipostatin, a peptide transmitted during mating through seminal fluid, which reduces oviposition in this species. The expression of yolk ferritin, the vitellogenin equivalent in L. stagnalis, was reduced after exposure to 94.2 ng Sn/L of tributyltin. The identification of yolk ferritin and the modification of its expression in snails exposed to chemicals were refined using western blot analysis. Our results showed that the tested compounds influenced the abundance of yolk ferritin in the reproductive organs. Alteration in proteins involved in reproductive pathways (e.g., ovipostatin and yolk ferritin) could constitute relevant evidence of interaction of EDCs with reproductive pathways that are under the control of the endocrine system of L. stagnalis.
Collapse
Affiliation(s)
- Arnaud Giusti
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liege University, Liège, Belgium
- INRA (Institut National de la Recherche Agronomique), UMR0985 Ecologie et Santé des Ecosystèmes, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, Rennes, France
- * E-mail:
| | | | | | - Jean-Pierre Thomé
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liege University, Liège, Belgium
| | - Laurent Lagadic
- INRA (Institut National de la Recherche Agronomique), UMR0985 Ecologie et Santé des Ecosystèmes, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, Rennes, France
| | - Virginie Ducrot
- INRA (Institut National de la Recherche Agronomique), UMR0985 Ecologie et Santé des Ecosystèmes, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, Rennes, France
| | - Célia Joaquim-Justo
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liege University, Liège, Belgium
| |
Collapse
|
4
|
Giusti A, Joaquim-Justo C. Esterification of vertebrate like steroids in molluscs: a target of endocrine disruptors? Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:187-98. [PMID: 24004916 DOI: 10.1016/j.cbpc.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/24/2022]
Abstract
Alterations of the reproductive organs of gastropod molluscs exposed to pollutants have been reported in natural populations for more than 40 years. In some cases, these impacts have been linked to exposure to endocrine-disrupting chemicals (EDCs), which are known to induce adverse impacts on vertebrates, mainly by direct binding to steroid receptors or by altering hormone synthesis. Investigations on the mechanisms of action of endocrine disruptors in molluscs show that EDCs induce modifications of endogenous titres of androgens (e.g., testosterone, androstenedione) and oestrogens (e.g., 17ß-oestradiol). Alterations of the activity of enzymes related to steroid metabolism (i.e., cytochrome P-450 aromatase, acyltransferases) are also often observed. In bivalves and gastropods, fatty acid esterification of steroids might constitute the major regulation of androgen and oestrogen homeostasis. The present review indicates that metabolism of steroid hormones to fatty acid esters might be a target of synthetic EDCs. Alterations of this process would impact the concentrations of free, potentially bioactive, form of steroids.
Collapse
Affiliation(s)
- Arnaud Giusti
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liège University, 15 Allée du 6 août, 4000 Liège, Belgium.
| | | |
Collapse
|
5
|
Giusti A, Barsi A, Dugué M, Collinet M, Thomé JP, Joaquim-Justo C, Roig B, Lagadic L, Ducrot V. Reproductive impacts of tributyltin (TBT) and triphenyltin (TPT) in the hermaphroditic freshwater gastropod Lymnaea stagnalis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1552-1560. [PMID: 23450754 DOI: 10.1002/etc.2200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/18/2012] [Accepted: 02/11/2013] [Indexed: 06/01/2023]
Abstract
Tributyltin (TBT) and triphenyltin (TPT) are emblematic endocrine disruptors, which have been mostly studied in gonochoric prosobranchs. Although both compounds can simultaneously occur in the environment, they have mainly been tested separately for their effects on snail reproduction. Because large discrepancies in experimental conditions occurred in these tests, the present study aimed to compare the relative toxicity of TBT and TPT under similar laboratory conditions in the range of 0 ng Sn/L to 600 ng Sn/L. Tests were performed on the simultaneous hermaphrodite Lymnaea stagnalis, a freshwater snail in which effects of TPT were unknown. Survival, shell length, and reproduction were monitored in a 21-d semistatic test. Frequency of abnormal eggs was assessed as an additional endpoint. Triphenyltin hampered survival while TBT did not. Major effects on shell solidity and reproduction were observed for both compounds, reproductive outputs being more severely hampered by TBT than by TPT. Considering the frequency of abnormal eggs allowed increasing test sensitivity, because snail responses to TBT could be detected at concentrations as low as 19 ng Sn/L. However, the putative mode of action of the 2 compounds could not be deduced from the structure of the molecules or from the response of apical endpoints. Sensitivity of L. stagnalis to TBT and TPT was compared with the sensitivity of prosobranch mollusks with different habitats and different reproductive strategies.
Collapse
Affiliation(s)
- Arnaud Giusti
- Laboratory of Animal Ecology and Ecotoxicology, Center of Analytical Research and Technology, Liège University, Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Choi M, Moon HB, Yu J, Cho H, Choi HG. Temporal trends (2004-2009) of imposex in rock shells Thais clavigera collected along the Korean coast associated with tributyltin regulation in 2003 and 2008. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 64:448-455. [PMID: 23254565 DOI: 10.1007/s00244-012-9839-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
We investigated the temporal trend in contamination of butyltin compounds (BTs) along the Korean coast using imposex and tributyltin (TBT) burden in gastropods (Thais clavigera) as a biomonitor. Thais clavigera were collected from 26 locations with different shipping activities between 2004 and 2009 after restrictions on TBT-based antifouling paints were imposed in Korea. In the present study, imposex indices and TBT tissue concentrations significantly decreased over time from 2004 to 2009, confirming the effectiveness of TBT regulation. However, imposex in 2009 samples was still found. Significantly high imposex indices and TBT tissue residues were found in large ports containing commercial and ferry services compared with small ports and background areas. Imposex indices in background areas had decreased to zero, suggesting recovery from imposex caused by BT contamination. These results suggest that recovery from TBT contamination occurs faster in areas with very low maritime activities than areas with high maritime activities.
Collapse
Affiliation(s)
- Minkyu Choi
- Marine Environment Research Division, National Fisheries Research and Development Institute, Busan, 619-705, Republic of Korea.
| | | | | | | | | |
Collapse
|
7
|
Horiguchi T, Ohta Y, Urushitani H, Lee JH, Park JC, Cho HS, Shiraishi H. Vas deferens and penis development in the imposex-exhibiting female rock shell, Thais clavigera. MARINE ENVIRONMENTAL RESEARCH 2012; 76:71-79. [PMID: 22033069 DOI: 10.1016/j.marenvres.2011.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/24/2011] [Accepted: 10/11/2011] [Indexed: 05/31/2023]
Abstract
The characteristics of the development of male genitalia (penis and vas deferens) in imposex-exhibiting female rock shells, Thais clavigera, were histologically examined using specimens from a wild population and tributyltin (TBT)-exposed females in the laboratory. A variety of vas deferens morphogenesis patterns were observed in wild female T. clavigera, and the characteristics were summarized. The immature vas deferens at an initial stage, however, was only observed beneath or behind the penis, and no vas deferens was observed close to the vaginal opening (i.e., vulva) of the capsule gland in TBT-exposed females, which was different from the characteristics of vas deferens formation observed in wild females. Taking into consideration both the observed results from wild female specimens and from TBT-exposed females in the laboratory, the vas deferens sequence (VDS) index for T. clavigera was proposed as VDS 1-6.
Collapse
Affiliation(s)
- Toshihiro Horiguchi
- Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | | | | | | | | | |
Collapse
|