1
|
Lamare M, Byrne M, Danis B, Deaker D, Di Luccio M, Dupont S, Foo SA, Jowett T, Karelitz S, Sewell MA, Thomas LJ, Agüera A. Antarctic cushion star Odontaster validus larval performance is negatively impacted by long-term parental acclimation to elevated temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177213. [PMID: 39471957 DOI: 10.1016/j.scitotenv.2024.177213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Cross-generational responses, when the parents' environment influences offspring performance, may contribute to species resilience to climate change in rapidly warming regions such as coastal Antarctica. Adult Antarctic sea stars Odontaster validus were conditioned in the laboratory to two temperature treatments (ambient, 0 °C and warming, +3 °C) for two years, and their gametes were used to generate larval offspring. The response of their larvae to five temperatures (0 °C, 1 °C, 2 °C, 3 °C, and 4 °C) was examined over 145 days. Adults conditioned to 3 °C produced significantly smaller eggs compared with those from 0 °C conditioned adults. After fertilisation, larval size, development, and survival were comparable in offspring from 0 °C and 3 °C conditioned parents. After 34 days of development, while survival was greater in offspring from 3 °C adults, offspring size was reduced during the transition from the gastrula to the bipinnaria larva. After ~50 days, survival in larvae from 3 °C conditioned adults decreased, and larval development was arrested at the bipinnaria stage (the exception being for larva reared at 4 °C which reached the early-brachiolaria). By the end of the experiment (145 days), offspring of the 0 °C conditioned adults had greater survival (17.6-34.3 %) and growth (final size = 697 to 773 μm) and had reached the early-brachiolaria larval stage, compared to those from the 3 °C conditioned adults (survival 7.0-19.3 %; growth final size = 380 to 624 μm) with early-brachiolaria larval stages mostly absent. Long-term acclimation of adults in elevated temperatures projected for the end of the century did not result in positive carryover outcomes for offspring, and did not lead to offspring being better suited to elevated temperatures. While O. validus adults may survive exposure to projected warming and produce viable gametes, their larval offspring may have lower developmental success. The downstream effects of poor recruitment of a key species such as O. validus would have important outcomes for coastal Antarctic ecosystems.
Collapse
Affiliation(s)
- Miles Lamare
- Department of Marine Science, University of Otago, Dunedin, New Zealand.
| | - Maria Byrne
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Bruno Danis
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, Belgium
| | - Dione Deaker
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Matt Di Luccio
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Sam Dupont
- Department of Biological and Environmental Sciences - Kristineberg, University of Gothenburg, Sweden; Radioecology Laboratory International Atomic Energy Agency (IAEA), Marine Laboratories, Principality of Monaco
| | - Shawna A Foo
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Tim Jowett
- Department of Statistics, University of Otago, Dunedin, New Zealand
| | - Sam Karelitz
- Department of Biological Science, Florida State University, USA
| | - Mary A Sewell
- School of Biological Sciences, University of Auckland, New Zealand
| | - Leighton J Thomas
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
2
|
Paredes-Molina FJ, Chaparro OR, Navarro JM, Cubillos VM, Montory JA, Pechenik JA. Embryonic encapsulated development of the gastropod Acanthina monodon is impacted by future environmental changes of temperature and pCO 2. MARINE ENVIRONMENTAL RESEARCH 2023; 187:105971. [PMID: 37004497 DOI: 10.1016/j.marenvres.2023.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Egg capsules of the gastropod Acanthina monodon were maintained during the entire period of encapsulated development at three temperatures (10, 15, 20 °C) and two pCO2 levels (400, 1200 μatm). Embryos per capsule, size at hatching, time to hatching, embryonic metabolic rates, and the resistance of juveniles to shell breakage were quantified. No embryos maintained at 20 °C developed to hatching. The combination of temperature and pCO2 levels had synergistic effects on hatching time and developmental success, antagonistic effects on number of hatchlings per capsule, resistance to juvenile shell cracking and metabolism, and additive effect on hatching size. Juveniles hatched significantly sooner at 15 °C, independent of the pCO2 level that they had been exposed to, while individuals hatched at significantly smaller sizes if they had been held under 15 °C/1200 μatm rather than at 10 °C/low pCO2. Embryos held at the higher pCO2 had a significantly greater percentage of abnormalities. For capsules maintained at low pCO2 and 15 °C, emerging juveniles had less resistance to shell breakage. Embryonic metabolism was significantly higher at 15 °C than at 10 °C, independent of pCO2 level. The lower metabolism occurred in embryos maintained at the higher pCO2 level. Thus, in this study, temperature was the factor that had the greatest effect on the encapsulated development of A. monodon, increasing the metabolism of the embryos and consequently accelerating development, which was expressed in a shorter intracapsular development time, but with smaller individuals at hatching and a lower resistance of their shells to breakage. On the other hand, the high pCO2 level suppressed metabolism, prolonged intracapsular development, and promoted more incomplete development of the embryos. However, the combination of the two factors can mitigate--to some extent--the adverse effects of both incomplete development and lower resistance to shell breakage.
Collapse
Affiliation(s)
- F J Paredes-Molina
- Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Valdivia, Chile.
| | - O R Chaparro
- Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Valdivia, Chile
| | - J M Navarro
- Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - V M Cubillos
- Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Valdivia, Chile
| | - J A Montory
- Centro i∼mar, Universidad De Los Lagos, Casilla 557, Puerto Montt, Chile
| | - J A Pechenik
- Biology Department, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
3
|
Minuti JJ, Byrne M, Campbell H, Hemraj DA, Russell BD. Live-fast-die-young: Carryover effects of heatwave-exposed adult urchins on the development of the next generation. GLOBAL CHANGE BIOLOGY 2022; 28:5781-5792. [PMID: 35923070 PMCID: PMC9805142 DOI: 10.1111/gcb.16339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
With rising ocean temperatures, extreme weather events such as marine heatwaves (MHWs) are increasing in frequency and duration, pushing marine life beyond their physiological limits. The potential to respond to extreme conditions through physiological acclimatization, and pass on resistance to the next generation, fundamentally depends on the capacity of an organism to cope within their thermal tolerance limits. To elucidate whether heat conditioning of parents could benefit offspring development, we exposed adult sea urchins (Heliocidaris erythrogramma) to ambient summer (23°C), moderate (25°C) or strong (26°C) MHW conditions for 10 days. Offspring were then reared at constant temperature along a thermal gradient (22-28°C) and development was tracked to the 14-day juvenile stage. Progeny from the MHW-conditioned adults developed through to metamorphosis faster than those of ambient conditioned parents, with most individuals from the moderate and strong heatwaves developing to the larval stage across all temperatures. In contrast, the majority of offspring from the control summer temperature died before metamorphosis at temperatures above 25°C (moderate MHW). Juveniles produced from the strong MHW-conditioned adults were also larger across all temperatures, with the largest juveniles in the 26°C treatment. In contrast, the smallest juveniles were from control (current-day summer) parents (and reared at 22 and 25°C). Surprisingly, initial survival was higher in the progeny of MHW exposed parents, even at temperatures hotter than predicted MHWs (28°C). Importantly, however, there was substantial mortality of juveniles from the strong MHW parents by day 14. Therefore, while carryover effects of parental conditioning to MHWs resulted in faster growing, larger progeny, this benefit will only persist beyond the more sensitive juvenile stage and enhance survival if conditions return promptly to normal seasonal temperatures within current thermal tolerance limits.
Collapse
Affiliation(s)
- Jay J. Minuti
- The Swire Institute of Marine Science and Area of Ecology and Biodiversity, School of Biological SciencesThe University of Hong KongHong Kong SARChina
- Institute for Climate and Carbon NeutralityThe University of Hong KongHong Kong SARChina
| | - Maria Byrne
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Hamish Campbell
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Deevesh A. Hemraj
- The Swire Institute of Marine Science and Area of Ecology and Biodiversity, School of Biological SciencesThe University of Hong KongHong Kong SARChina
- Institute for Climate and Carbon NeutralityThe University of Hong KongHong Kong SARChina
| | - Bayden D. Russell
- The Swire Institute of Marine Science and Area of Ecology and Biodiversity, School of Biological SciencesThe University of Hong KongHong Kong SARChina
- Institute for Climate and Carbon NeutralityThe University of Hong KongHong Kong SARChina
- The Dove Marine LaboratorySchool of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
4
|
Byrne M, Gall ML, Campbell H, Lamare MD, Holmes SP. Staying in place and moving in space: Contrasting larval thermal sensitivity explains distributional changes of sympatric sea urchin species to habitat warming. GLOBAL CHANGE BIOLOGY 2022; 28:3040-3053. [PMID: 35108424 DOI: 10.1111/gcb.16116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
For marine ectotherms, larval success, planktonic larval duration and dispersal trajectories are strongly influenced by temperature, and therefore, ocean warming and heatwaves have profound impacts on these sensitive stages. Warming, through increased poleward flow in regions with western boundary currents, such as the East Australia Current (EAC), provides opportunities for range extension as propagules track preferred conditions. Two sea urchin species, Centrostephanus rodgersii and Heliocidaris tuberculata, sympatric in the EAC warming hotspot, exhibit contrasting responses to warming. Over half a century, C. rodgersii has undergone marked poleward range extension, but the range of H. tuberculata has not changed. We constructed thermal performance curves (TPC) to determine if contrasting developmental thermal tolerance can explain this difference. The temperatures tested encompassed present-day distribution and forecast ocean warming/heatwave conditions. The broad and narrow thermal optimum (Topt) ranges for C. rodgersii and H. tuberculata larvae (7.2 and 4.7°C range, respectively) matched their realized (adult distribution) thermal niches. The cool and warm temperatures for 50% development to the feeding larva approximated temperatures at adult poleward range limits. Larval cool tolerances with respect to mean local temperature differed, 6.0 and 3.8°C respectively. Larval warm tolerances were similar for both species as are the adult warm range edges. The larvae of both species would be sensitive to heatwaves. Centrostephanus rodgersii has stayed in place and shifted in space, likely due to its broad cold-warm larval thermal tolerance and large thermal safety margins. Phenotypic plasticity of the planktonic stage of C. rodgersii facilitated its range extension. In contrast, larval cold intolerance of H. tuberculata explains its restricted range and will delay poleward extension as the region warms. In a warming ocean, we show that intrinsic thermal biology traits of the pelagic stage provide an integrative tool to explain species-specific variation in range shift patterns.
Collapse
Affiliation(s)
- Maria Byrne
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Mailie L Gall
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Hamish Campbell
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Miles D Lamare
- Department of Marine Sciences, University of Otago, Otago, New Zealand
| | - Sebastian P Holmes
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
5
|
Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat Ecol Evol 2021; 5:311-321. [PMID: 33432134 DOI: 10.1038/s41559-020-01370-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/01/2020] [Indexed: 01/28/2023]
Abstract
Over the past decades, three major challenges to marine life have emerged as a consequence of anthropogenic emissions: ocean warming, acidification and oxygen loss. While most experimental research has targeted the first two stressors, the last remains comparatively neglected. Here, we implemented sequential hierarchical mixed-model meta-analyses (721 control-treatment comparisons) to compare the impacts of oxygen conditions associated with the current and continuously intensifying hypoxic events (1-3.5 O2 mg l-1) with those experimentally yielded by ocean warming (+4 °C) and acidification (-0.4 units) conditions on the basis of IPCC projections (RCP 8.5) for 2100. In contrast to warming and acidification, hypoxic events elicited consistent negative effects relative to control biological performance-survival (-33%), abundance (-65%), development (-51%), metabolism (-33%), growth (-24%) and reproduction (-39%)-across the taxonomic groups (mollusks, crustaceans and fish), ontogenetic stages and climate regions studied. Our findings call for a refocus of global change experimental studies, integrating oxygen concentration drivers as a key factor of ocean change. Given potential combined effects, multistressor designs including gradual and extreme changes are further warranted to fully disclose the future impacts of ocean oxygen loss, warming and acidification.
Collapse
|
6
|
Gall ML, Holmes SP, Campbell H, Byrne M. Effects of marine heatwave conditions across the metamorphic transition to the juvenile sea urchin (Heliocidaris erythrogramma). MARINE POLLUTION BULLETIN 2021; 163:111914. [PMID: 33385800 DOI: 10.1016/j.marpolbul.2020.111914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
For short development species, like the sea urchin Heliocidaris erythrogramma, the entire planktonic duration can be impacted by marine heatwaves (MHW). Developmental thermal tolerance of this species through metamorphosis was investigated over a broad range (7.6-28.0 °C), including temperatures across its distribution and MHW conditions. In controls (19.5-21.0 °C), 80% of individuals developed to metamorphosis at day 5, doubling to 10 days at 14.0 °C. The thermal range (14.4-21.2 °C) of metamorphosis on day 7 reflected the realised thermal niche with 25.9 °C the upper temperature for success (T40). By day 10, juvenile tolerance narrowed to the local range (16.2-19.0 °C), similar to levels tolerated by adults, indicating negative carryover effects across the metamorphic transition. Without phenotypic adjustment or adaptation, regional warming will be detrimental, although populations may be sustained by thermotolerant offspring. Our results show the importance of the metamorphic transition in understanding the cumulative sensitivity of species to MHW.
Collapse
Affiliation(s)
- Mailie L Gall
- School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Sebastian P Holmes
- School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Hamish Campbell
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
7
|
Devens HR, Davidson PL, Deaker DJ, Smith KE, Wray GA, Byrne M. Ocean acidification induces distinct transcriptomic responses across life history stages of the sea urchin Heliocidaris erythrogramma. Mol Ecol 2020; 29:4618-4636. [PMID: 33002253 PMCID: PMC8994206 DOI: 10.1111/mec.15664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 09/01/2023]
Abstract
Ocean acidification (OA) from seawater uptake of rising carbon dioxide emissions impairs development in marine invertebrates, particularly in calcifying species. Plasticity in gene expression is thought to mediate many of these physiological effects, but how these responses change across life history stages remains unclear. The abbreviated lecithotrophic development of the sea urchin Heliocidaris erythrogramma provides a valuable opportunity to analyse gene expression responses across a wide range of life history stages, including the benthic, post-metamorphic juvenile. We measured the transcriptional response to OA in H. erythrogramma at three stages of the life cycle (embryo, larva, and juvenile) in a controlled breeding design. The results reveal a broad range of strikingly stage-specific impacts of OA on transcription, including changes in the number and identity of affected genes; the magnitude, sign, and variance of their expression response; and the developmental trajectory of expression. The impact of OA on transcription was notably modest in relation to gene expression changes during unperturbed development and much smaller than genetic contributions from parentage. The latter result suggests that natural populations may provide an extensive genetic reservoir of resilience to OA. Taken together, these results highlight the complexity of the molecular response to OA, its substantial life history stage specificity, and the importance of contextualizing the transcriptional response to pH stress in light of normal development and standing genetic variation to better understand the capacity for marine invertebrates to adapt to OA.
Collapse
Affiliation(s)
| | | | - Dione J Deaker
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| | - Kathryn E Smith
- The Laboratory, The Marine Biological Association, Plymouth, UK
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Maria Byrne
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Balogh R, Byrne M. Developing in a warming intertidal, negative carry over effects of heatwave conditions in development to the pentameral starfish in Parvulastra exigua. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105083. [PMID: 32810717 DOI: 10.1016/j.marenvres.2020.105083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Ocean warming and increasing incidence of marine heat waves (MHW) are having far-reaching impacts on coastal ecosystems. The small intertidal asterinid starfish, Parvulastra exigua, in south-eastern Australia, occurs in a global warming hotspot. Development occurs in the intertidal as this species lays eggs and has benthic larvae. The impact of temperature on development to the juvenile was determined over a broad temperature range (12-28 °C) encompassing temperatures experienced during the breeding season (16-20 °C) and cool (- 4 °C) and warm (+10 °C) extremes with the higher temperatures (24-28 °C) simulating a MHW. As the larva to juvenile transition involves major body reorganisation, we determined the impact of temperature on metamorphosis and formation of the normal five-armed juvenile. Development was faster at the higher temperatures 24-28 °C, but survival decreased from 1 to 5 days post fertilisation (dpf). Mortality was evident from day 15 at 22 °C and no larvae survived to 20 dpf at 28 °C. Thermal tolerance decreased over developmental time and the thermal optimum for 95% survival to the 20 day old juvenile spanned from 12 to 20.0 °C with the lethal temperature for 50% survival being 23.5 °C (5.5 °C above ambient). Juveniles reared in 26 °C were smaller, suggesting application of the temperature size rule. Increased temperature (22-26 °C) perturbed pentamery with three, four, six and no-armed juveniles present, contrasting with the low level of non-pentamerous individuals (<3%) in the cooler cultures and in nature (five populations surveyed). Despite the high thermal tolerance in premetamorphic stages, negative carry over effects were evident in the juveniles. This shows the importance of considering the whole of development in climate warming studies. As sea surface temperatures increase and heatwaves become more prevalent, habitat warming will be detrimental to P. exigua populations.
Collapse
Affiliation(s)
- Regina Balogh
- School of Life and Environmental Sciences, A11, The University of Sydney, NSW, 2006, Australia.
| | - Maria Byrne
- School of Life and Environmental Sciences, A11, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
9
|
Zhan Y, Cui D, Xing D, Zhang J, Zhang W, Li Y, Li C, Chang Y. CO 2-driven ocean acidification repressed the growth of adult sea urchin Strongylocentrotus intermedius by impairing intestine function. MARINE POLLUTION BULLETIN 2020; 153:110944. [PMID: 32056852 DOI: 10.1016/j.marpolbul.2020.110944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Strongylocentrotus intermedius cultured in the northern Yellow Sea in China was utilized to evaluate the effects of chronic CO2-driven ocean acidification (OA) on adult sea urchins. Based on the projection of the Intergovernmental Panel on Climate Change (IPCC), present natural seawater conditions (pHNBS = 8.10 ± 0.03) and three laboratory-controlled OA conditions (OA1, ΔpHNBS = - 0.3 units; OA2, ΔpHNBS = - 0.4 units; OA3, ΔpHNBS = - 0.5 units) were employed. After 60-day incubation, our results showed that (1) OA significantly repressed the growth of adult S. intermedius; (2) food consumption tended to be decreased with pH decline; (3) intestinal morphology was changed, and activities of intestinal cellulase and lipase were decreased under acidified conditions; (4) expression levels of two immune-related genes (SiTNF14 and SiTGF-β) were altered; (5) rate-limiting enzyme activities of the glycolytic pathway and tricarboxylic acid cycle (TAC) were changed in all OA treatments compared to those of controls.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Dongfei Xing
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Jun Zhang
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yingying Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Cong Li
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, PR China.
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
10
|
Irvine SQ. Embryonic canalization and its limits-A view from temperature. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:128-144. [PMID: 32011096 DOI: 10.1002/jez.b.22930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Many animals are able to produce similar offspring over a range of environmental conditions. This property of the developmental process has been termed canalization-the channeling of developmental pathways to generate a stable outcome despite varying conditions. Temperature is one environmental parameter that has fundamental effects on cell physiology and biochemistry, yet developmental programs generally result in a stable phenotype under a range of temperatures. On the other hand, there are typically upper and lower temperature limits beyond which the developmental program is unable to produce normal offspring. This review summarizes data on how development is affected by temperature, particularly high temperature, in various animal species. It also brings together information on potential cell biological and developmental genetic factors that may be responsible for developmental stability in varying temperatures, and likely critical mechanisms that break down at high temperature. Also reviewed are possible means for studying temperature effects on embryogenesis and how to determine which factors are most critical at the high-temperature limits for normal development. Increased knowledge of these critical factors will point to the targets of selection under climate change, and more generally, how developmental robustness in varying environments is maintained.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
11
|
Chan KYK, Tong CSD. Temporal variability modulates pH impact on larval sea urchin development: Themed Issue Article: Biomechanics and Climate Change. CONSERVATION PHYSIOLOGY 2020; 8:coaa008. [PMID: 32274060 PMCID: PMC7132065 DOI: 10.1093/conphys/coaa008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/01/2019] [Accepted: 01/22/2020] [Indexed: 05/11/2023]
Abstract
Coastal organisms reside in highly dynamic habitats. Global climate change is expected to alter not only the mean of the physical conditions experienced but also the frequencies and/or the magnitude of fluctuations of environmental factors. Understanding responses in an ecologically relevant context is essential for formulating management strategies. In particular, there are increasing suggestions that exposure to fluctuations could alleviate the impact of climate change-related stressors by selecting for plasticity that may help acclimatization to future conditions. However, it remains unclear whether the presence of fluctuations alone is sufficient to confer such effects or whether the pattern of the fluctuations matters. Therefore, we investigated the role of frequency and initial conditions of the fluctuations on performance by exposing larval sea urchin Heliocidaris crassispina to either constant or fluctuating pH. Reduced pH alone (pH 7.3 vs 8.0) did not affect larval mortality but reduced the growth of larval arms in the static pH treatments. Changes in morphology could affect the swimming mechanics for these small organisms, and geometric morphometric analysis further suggested an overall shape change such that acidified larvae had more U-shaped bodies and shorter arms, which would help maintain stability in moving water. The relative negative impact of lower pH, computed as log response ratio, on larval arm development was smaller when larvae were exposed to pH fluctuations, especially when the change was less frequent (48- vs 24-h cycle). Furthermore, larvae experiencing an initial pH drop, i.e. those where the cycle started at pH 8.0, were more negatively impacted compared with those kept at an initial pH of 7.3 before the cycling started. Our observations suggest that larval responses to climate change stress could not be easily predicted from mean conditions. Instead, to better predict organismal performance in the future ocean, monitoring and investigation of the role of real-time environmental fluctuations along the dispersive pathway is key.
Collapse
Affiliation(s)
- Kit Yu Karen Chan
- Corresponding author: Biology Department, Swarthmore College, Swarthmore, PA, USA. Tel: 610-328-8051.
| | - Chun Sang Daniel Tong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
12
|
Manríquez PH, González CP, Brokordt K, Pereira L, Torres R, Lattuca ME, Fernández DA, Peck MA, Cucco A, Antognarelli F, Marras S, Domenici P. Ocean warming and acidification pose synergistic limits to the thermal niche of an economically important echinoderm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133469. [PMID: 31635008 DOI: 10.1016/j.scitotenv.2019.07.275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/30/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
To make robust projectios of the impacts of climate change, it is critical to understand how abiotic factors may interact to constrain the distribution and productivity of marine flora and fauna. We evaluated the effects of projected end of the century ocean acidification (OA) and warming (OW) on the thermal tolerance of an important living marine resource, the sea urchin Loxechinus albus, a benthic shallow water coastal herbivore inhabiting part of the Pacific coast of South America. After exposing young juveniles for a 1-month period to contrasting pCO2 (~500 and 1400 μatm) and temperature (~15 °C and 20 °C) levels, critical thermal maximum (CTmax) and minimum (CTmin) as well as thermal tolerance polygons were assessed based on self-righting success as an end point. Transcription of heat shock protein 70 (HSP70), a chaperone protecting cellular proteins from environmental stress, was also measured. Exposure to elevated pCO2 significantly reduced thermal tolerance by increasing CTmin at both experimental temperatures and decreasing CTmax at 20 °C. There was also a strong synergistic effect of OA × OW on HSP70 transcription levels which were 75 times higher than in control conditions. If this species is unable to adapt to elevated pCO2 in the future, the reduction in thermal tolerance and HSP response suggests that near-future warming and OA will disrupt their performance and reduce their distribution with ecological and economic consequences. Given the wider latitudinal range (6 to 56°S) and environmental tolerance of L. albus compared to other members of this region's benthic invertebrate community, OW and OA may cause substantial changes to the coastal fauna along this geographical range.
Collapse
Affiliation(s)
- Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile.
| | - Claudio P González
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Katherina Brokordt
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Universidad Católica del Norte, Coquimbo, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Luis Pereira
- Departamento de Acuicultura, Facultad de Ciencias de Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Rodrigo Torres
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile; Centro de Investigación: Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Punta Arenas, Chile
| | - María E Lattuca
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos (LEFyE), Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina
| | - Daniel A Fernández
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos (LEFyE), Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina; Universidad Nacional de Tierra del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Fuegia Basket 251, 9410 Ushuaia, Tierra del Fuego, Argentina
| | - Myron A Peck
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability, University of Hamburg, GroßeElbstrasse 133, D-22767 Hamburg, Germany
| | - Andrea Cucco
- CNR-IAMC-Istituto per l'Ambiente Marino Costiero, Localita Sa Mardini, Torregrande, Oristano 09170, Italy
| | - Fabio Antognarelli
- CNR-IAMC-Istituto per l'Ambiente Marino Costiero, Localita Sa Mardini, Torregrande, Oristano 09170, Italy
| | - Stefano Marras
- CNR-IAMC-Istituto per l'Ambiente Marino Costiero, Localita Sa Mardini, Torregrande, Oristano 09170, Italy
| | - Paolo Domenici
- CNR-IAMC-Istituto per l'Ambiente Marino Costiero, Localita Sa Mardini, Torregrande, Oristano 09170, Italy
| |
Collapse
|
13
|
Mejía-Gutiérrez LM, Benítez-Villalobos F, Díaz-martínez JP. Effect of temperature increase on fertilization, embryonic development and larval survival of the sea urchin Toxopneustes roseus in the Mexican south Pacific. J Therm Biol 2019; 83:157-164. [DOI: 10.1016/j.jtherbio.2019.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/26/2019] [Accepted: 05/18/2019] [Indexed: 12/19/2022]
|
14
|
García E, Hernández JC, Clemente S. Robustness of larval development of intertidal sea urchin species to simulated ocean warming and acidification. MARINE ENVIRONMENTAL RESEARCH 2018; 139:35-45. [PMID: 29753493 DOI: 10.1016/j.marenvres.2018.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/30/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Ocean warming and acidification are the two most significant side effects of carbone dioxide emissions in the world's oceans. By changing water, temperature and pH are the main environmental factors controlling the distribution, physiology, morphology and behaviour of marine invertebrates. This study evaluated the combined effects of predicted high temperature levels, and predicted low pH values, on fertilization and early development stages of the sea urchins Arbacia lixula, Paracentrotus lividus, Sphaerechinus granularis and Diadema africanum. Twelve treatments, combining different temperatures (19, 21, 23 and 25 °C) and pH values (8.1, 7.7 and 7.4 units), were tested in laboratory experiments. All of the tested temperatures and pH values were within the open coast seawater range expected within the next century. We examined fertilization rate, cleavage rate, 3-day larvae survival, and development of the different sea urchin species at set time intervals after insemination. Our results highlight the susceptibility of subtidal species to environmental changes, and the robustness of intertidal species to ocean warming and acidification.
Collapse
Affiliation(s)
- Eliseba García
- Biodiversidad, Ecología Marina y Conservación, Dpto. Biología Animal (Ciencias Marinas), Facultad de Biología, Universidad de La Laguna. La Laguna, Tenerife, Islas Canarias, España, Spain.
| | - José Carlos Hernández
- Biodiversidad, Ecología Marina y Conservación, Dpto. Biología Animal (Ciencias Marinas), Facultad de Biología, Universidad de La Laguna. La Laguna, Tenerife, Islas Canarias, España, Spain
| | - Sabrina Clemente
- Biodiversidad, Ecología Marina y Conservación, Dpto. Biología Animal (Ciencias Marinas), Facultad de Biología, Universidad de La Laguna. La Laguna, Tenerife, Islas Canarias, España, Spain
| |
Collapse
|
15
|
Nardi A, Mincarelli LF, Benedetti M, Fattorini D, d'Errico G, Regoli F. Indirect effects of climate changes on cadmium bioavailability and biological effects in the Mediterranean mussel Mytilus galloprovincialis. CHEMOSPHERE 2017; 169:493-502. [PMID: 27894055 DOI: 10.1016/j.chemosphere.2016.11.093] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Despite the great interest in the consequences of climate change on the physiological functioning of marine organisms, indirect and interactive effects of rising temperature and pCO2 on bioaccumulation and responsiveness to environmental pollutants are still poorly explored, particularly in terms of cellular mechanisms. According to future projections of temperature and pH/pCO2, this study investigated the main cellular pathways involved in metal detoxification and oxidative homeostasis in Mediterranean mussels, Mytilus galloprovincialis, exposed for 4 weeks to various combinations of two levels of pH/pCO2 (8.2/∼400 μatm and 7.4/∼3000 μatm), temperature (20 and 25 °C), and cadmium addition (0 and 20 μg/L). Bioaccumulation was increased in metal exposed organisms but it was not further modulated by different temperature and pH/pCO2 combinations. However, interactions between temperature, pH and cadmium had significant effects on induction of metallothioneins, responses of the antioxidant system and the onset of oxidative damages, which was tissue dependent. Multiple stressors increased metallothioneins concentrations in the digestive gland revealing different oxidative effects: while temperature and cadmium enhanced glutathione-dependent antioxidant protection and capability to neutralize peroxyl radicals, the metal increased the accumulation of lipid peroxidation products under acidified conditions. Gills did not reveal specific effects for different combinations of factors, but a general stress condition was observed in this tissue after various treatments. Significant variations of immune system were mainly caused by increased temperature and low pH, while co-exposure to acidification and cadmium enhanced metal genotoxicity and the onset of permanent DNA damage in haemocytes. Elaboration of the whole biomarker data in a cellular hazard index, corroborated the synergistic effects of temperature and acidification which increased the toxicological effects of cadmium. The overall results confirmed that climate change could influence ecotoxicological effects of environmental contaminants, highlighting the importance of a better knowledge of cellular mechanisms to understand and predict responsiveness of marine organisms to such multiple stressors.
Collapse
Affiliation(s)
- Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Luana Fiorella Mincarelli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Maura Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy; CoNISMa, Consorzio Interuniversitario per le Scienze del Mare, Roma, Italy
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy; CoNISMa, Consorzio Interuniversitario per le Scienze del Mare, Roma, Italy.
| |
Collapse
|
16
|
Zhan Y, Hu W, Zhang W, Liu M, Duan L, Huang X, Chang Y, Li C. The impact of CO 2-driven ocean acidification on early development and calcification in the sea urchin Strongylocentrotus intermedius. MARINE POLLUTION BULLETIN 2016; 112:291-302. [PMID: 27522173 DOI: 10.1016/j.marpolbul.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/21/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
The impact of CO2-driven ocean acidification(OA) on early development and calcification in the sea urchin Strongylocentrotus intermedius cultured in northern Yellow Sea was investigated by comparing fertilization success, early cleavage rate, hatching rate of blastulae, larvae survival rate at 70h post-fertilization, larval morphology and calcification under present natural seawater condition (pH=8.00±0.03) and three laboratory-controlled acidified conditions (OA1, △pH=-0.3units; OA2, △pH=-0.4units; OA3, △pH=-0.5units) projected by IPCC for 2100. Results showed that pH decline had no effect on the overall fertilization, however, with decreased pH, delayed early embryonic cleavage, reduced hatching rate of blastulae and four-armed larvae survival rate at 70h post-fertilization, impaired larval symmetry, shortened larval spicules, and corrosion spicule structure were observed in all OA-treated groups as compared to control, which indicated that CO2-driven OA affected early development and calcification in S. intermedius negatively.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Wanbin Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Minbo Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Lizhu Duan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Xianya Huang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China.
| | - Cong Li
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
17
|
Przeslawski R, Byrne M, Mellin C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. GLOBAL CHANGE BIOLOGY 2015; 21:2122-2140. [PMID: 25488061 DOI: 10.1111/gcb.12833] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Marine organisms are simultaneously exposed to anthropogenic stressors with likely interactive effects, including synergisms in which the combined effects of multiple stressors are greater than the sum of individual effects. Early life stages of marine organisms are potentially vulnerable to the stressors associated with global change, but identifying general patterns across studies, species and response variables is challenging. This review represents the first meta-analysis of multistressor studies to target early marine life stages (embryo to larvae), particularly between temperature, salinity and pH as these are the best studied. Knowledge gaps in research on multiple abiotic stressors and early life stages are also identified. The meta-analysis yielded several key results: (1) Synergistic interactions (65% of individual tests) are more common than additive (17%) or antagonistic (17%) interactions. (2) Larvae are generally more vulnerable than embryos to thermal and pH stress. (3) Survival is more likely than sublethal responses to be affected by thermal, salinity and pH stress. (4) Interaction types vary among stressors, ontogenetic stages and biological responses, but they are more consistent among phyla. (5) Ocean acidification is a greater stressor for calcifying than noncalcifying larvae. Despite being more ecologically realistic than single-factor studies, multifactorial studies may still oversimplify complex systems, and so meta-analyses of the data from them must be cautiously interpreted with regard to extrapolation to field conditions. Nonetheless, our results identify taxa with early life stages that may be particularly vulnerable (e.g. molluscs, echinoderms) or robust (e.g. arthropods, cnidarians) to abiotic stress. We provide a list of recommendations for future multiple stressor studies, particularly those focussed on early marine life stages.
Collapse
Affiliation(s)
- Rachel Przeslawski
- National Earth and Marine Observations Group, Geoscience Australia, GPO Box 378, Canberra, ACT, 2601, Australia; School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | | | | |
Collapse
|