1
|
deVries MS, Ly N, Ebner C, Hallisey R. From Individual Calcifiers to Ecosystem Dynamics: Ocean Acidification Effects on Urchins and Abalone. Integr Comp Biol 2024; 64:290-305. [PMID: 38986515 DOI: 10.1093/icb/icae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
A central question in ecology is to what extent do trophic interactions govern the structure and function of communities? This question is becoming more pressing as trophic interactions shift with rapid climate change. Sea urchins and abalone are key invertebrates in the habitats where they reside. Sea urchins are critical members of exemplar trophic cascades in kelp forests due to their impact on kelp establishment and maintenance; yet their populations are controlled by predators, such as sea otters and sunflower sea stars. Abalone compete with urchins for macroalgal food resources and therefore can help regulate urchin populations in kelp forests. Given that both urchin tests and abalone shells used for predator defense are comprised of calcium carbonate, much research has been conducted on the impacts of ocean acidification (OA) on these calcified structures. A growing body of literature has shown that urchin tests are less calcified and break with less force under OA conditions. Less is known about abalone, but their shells also appear to respond negatively to OA. Using kelp forest communities as exemplar ecosystems, we discuss the morphological, biomechanical, and physiological responses to OA in urchins and abalone and consider how these individual level responses scale to trophic interactions and ultimately whole ecosystem processes. Although the impacts of OA on the calcified structures used for defense have been well studied, calcified mechanisms for food consumption, such as the Aristotle's lantern of urchins, are much less understood. Thus, examining both the feeding and defense sides of trophic interactions would greatly improve our understanding of OA responses across individual to ecosystem scales. More generally, measurements of morphological, biomechanical, and physiological responses to OA can be made in individuals to help predict higher level ecological responses, which would greatly contribute to broader predictions of whole ecosystem responses to OA.
Collapse
Affiliation(s)
- Maya S deVries
- Department of Biological Sciences, San José State University, San Jose, CA 95192, USA
| | - Nhi Ly
- Department of Biological Sciences, San José State University, San Jose, CA 95192, USA
| | - Chase Ebner
- Moss Landing Marine Laboratories, San José State University, Moss Landing, CA 95039, USA
| | - Ryan Hallisey
- Department of Biological Sciences, San José State University, San Jose, CA 95192, USA
| |
Collapse
|
2
|
Effects of Seawater Acidification on Echinoid Adult Stage: A Review. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10040477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The continuous release of CO2 in the atmosphere is increasing the acidity of seawater worldwide, and the pH is predicted to be reduced by ~0.4 units by 2100. Ocean acidification (OA) is changing the carbonate chemistry, jeopardizing the life of marine organisms, and in particular calcifying organisms. Because of their calcareous skeleton and limited ability to regulate the acid–base balance, echinoids are among the organisms most threatened by OA. In this review, 50 articles assessing the effects of seawater acidification on the echinoid adult stage have been collected and summarized, in order to identify the most important aspects to consider for future experiments. Most of the endpoints considered (i.e., related to calcification, physiology, behaviour and reproduction) were altered, highlighting how various and subtle the effects of pH reduction can be. In general terms, more than 43% of the endpoints were modified by low pH compared with the control condition. However, animals exposed in long-term experiments or resident in CO2-vent systems showed acclimation capability. Moreover, the latitudinal range of animals’ distribution might explain some of the differences found among species. Therefore, future experiments should consider local variability, long-term exposure and multigenerational approaches to better assess OA effects on echinoids.
Collapse
|
3
|
Asnaghi V, Chindris A, Leggieri F, Scolamacchia M, Brundu G, Guala I, Loi B, Chiantore M, Farina S. Decreased pH impairs sea urchin resistance to predatory fish: A combined laboratory-field study to understand the fate of top-down processes in future oceans. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105194. [PMID: 33126114 DOI: 10.1016/j.marenvres.2020.105194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Changing oceans represent a serious threat for a wide range of marine organisms, with severe cascading effects on ecosystems and their services. Sea urchins are particularly sensitive to decreased pH expected for the end of the century and their key ecological role in regulating community structure and functioning could be seriously compromised. An integrated approach of laboratory and field experiments has been implemented to investigate the effects of decreased pH on predator-prey interaction involving sea urchins and their predators. Our results suggest that under future Ocean Acidification scenarios adult sea urchins defence strategies, such as spine length, test robustness and oral plate thickness, could be compromised together with their survival chance to natural predators. Sea urchins represent the critical linkage between top-down and bottom-up processes along Mediterranean rocky reefs, and the cumulative impacts of global and local stressors could lead to a decline producing cascading effects on benthic ecosystems.
Collapse
Affiliation(s)
- V Asnaghi
- DISTAV, University of Genoa, C.so Europa 26, 16132, Genoa, Italy.
| | - A Chindris
- IMC - International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy
| | - F Leggieri
- IMC - International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy; CNR - National Research Council, IAS - Institute of Anthropic Impacts and Sustainability in Marine Environment, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy
| | - M Scolamacchia
- IMC - International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy; CNR - National Research Council, IAS - Institute of Anthropic Impacts and Sustainability in Marine Environment, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy
| | - G Brundu
- IMC - International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy
| | - I Guala
- IMC - International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy
| | - B Loi
- IMC - International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy
| | - M Chiantore
- DISTAV, University of Genoa, C.so Europa 26, 16132, Genoa, Italy
| | - S Farina
- IMC - International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy
| |
Collapse
|
4
|
Di Giglio S, Spatafora D, Milazzo M, M'Zoudi S, Zito F, Dubois P, Costa C. Are control of extracellular acid-base balance and regulation of skeleton genes linked to resistance to ocean acidification in adult sea urchins? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137443. [PMID: 32325563 DOI: 10.1016/j.scitotenv.2020.137443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Sarah Di Giglio
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, 1050 Bruxelles, Belgium.
| | - Davide Spatafora
- Department of Earth and Marine Science (DiSTeM), Università degli studi di Palermo, 90146 Palermo, Italy
| | - Marco Milazzo
- Department of Earth and Marine Science (DiSTeM), Università degli studi di Palermo, 90146 Palermo, Italy
| | - Saloua M'Zoudi
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Francesca Zito
- Consiglio Nazionale Delle Ricerche, Istituto per la Ricerca e per l'Innovazione Biomedica (IRIB), Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Philippe Dubois
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, 1050 Bruxelles, Belgium.
| | - Caterina Costa
- Consiglio Nazionale Delle Ricerche, Istituto per la Ricerca e per l'Innovazione Biomedica (IRIB), Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
5
|
Boudouresque CF, Verlaque M. Paracentrotus lividus. DEVELOPMENTS IN AQUACULTURE AND FISHERIES SCIENCE 2020. [DOI: 10.1016/b978-0-12-819570-3.00026-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Byrne M, Fitzer S. The impact of environmental acidification on the microstructure and mechanical integrity of marine invertebrate skeletons. CONSERVATION PHYSIOLOGY 2019; 7:coz062. [PMID: 31737270 PMCID: PMC6846232 DOI: 10.1093/conphys/coz062] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/25/2019] [Accepted: 07/25/2019] [Indexed: 05/20/2023]
Abstract
Ocean acidification (OA), from seawater uptake of anthropogenic CO2, has a suite of negative effects on the ability of marine invertebrates to produce and maintain their skeletons. Increased organism pCO2 causes hypercapnia, an energetically costly physiological stress. OA alters seawater carbonate chemistry, limiting the carbonate available to form the calcium carbonate (CaCO3) minerals used to build skeletons. The reduced saturation state of CaCO3 also causes corrosion of CaCO3 structures. Global change is also accelerating coastal acidification driven by land-run off (e.g. acid soil leachates, tannic acid). Building and maintaining marine biomaterials in the face of changing climate will depend on the balance between calcification and dissolution. Overall, in response to environmental acidification, many calcifiers produce less biomineral and so have smaller body size. Studies of skeleton development in echinoderms and molluscs across life stages show the stunting effect of OA. For corals, linear extension may be maintained, but at the expense of less dense biomineral. Conventional metrics used to quantify growth and calcification need to be augmented by characterisation of the changes to biomineral structure and mechanical integrity caused by environmental acidification. Scanning electron microscopy and microcomputed tomography of corals, tube worms and sea urchins exposed to experimental (laboratory) and natural (vents, coastal run off) acidification show a less dense biomineral with greater porosity and a larger void space. For bivalves, CaCO3 crystal deposition is more chaotic in response to both ocean and coastal acidification. Biomechanics tests reveal that these changes result in weaker, more fragile skeletons, compromising their vital protective roles. Vulnerabilities differ among taxa and depend on acidification level. Climate warming has the potential to ameliorate some of the negative effects of acidification but may also make matters worse. The integrative morphology-ecomechanics approach is key to understanding how marine biominerals will perform in the face of changing climate.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Science and School of Life and Environmental Science, The University of Sydney, NSW 2006, Australia
- Corresponding author: School of Medical Science and School of Life and Environmental Science, The University of Sydney, NSW 2006, Australia.
| | - Susan Fitzer
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|