1
|
Chen H, Feng Y, Cui J, Wang X. Response of CRH system in brain and gill of marine medaka to seawater acidification. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1225-1236. [PMID: 38512395 DOI: 10.1007/s10695-024-01332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Corticotropin-releasing hormone (CRH) is mainly secreted by the hypothalamus to regulate stress when environmental factors change. Gills contact with water directly and may also secrete CRH to maintain local homeostasis. Ocean acidification changes water chemical parameters and is becoming an important environmental stressor for marine fish. The response of brain and gill CRH systems to ocean acidification remains unclear. In this study, marine medaka were exposed to CO2-acidified seawater (440 ppm, 1000 ppm, and 1800 ppm CO2) for 2 h, 4 h, 24 h, and 7 d, respectively. At 2 h and 4 h, the expression of crh mRNA in gills increased with increasing CO2 concentration. Crh protein is expressed mainly in the lamellae cells. crhbp and crhr1 expression also increased significantly. However, at 2 h and 4 h, acidification caused little changes in these genes and Crh protein expression in the brain. At 7 d, Crh-positive cells were detected in the hypothalamus; moreover, Crh protein expression in the whole brain increased. It is suggested that CRH autocrine secretion in gills is responsible for local acid-base regulation rather than systemic mobilization after short-term acidification stress, which may help the rapid regulation of body damage caused by environmental stress.
Collapse
Affiliation(s)
- Haijin Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yaoyi Feng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jinghui Cui
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Xiaojie Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
2
|
Li H, Zhang J, Ge X, Chen S, Ma Z. The Effects of Short-Term Exposure to pH Reduction on the Behavioral and Physiological Parameters of Juvenile Black Rockfish ( Sebastes schlegelii). BIOLOGY 2023; 12:876. [PMID: 37372160 DOI: 10.3390/biology12060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Coastal areas are subject to greater pH fluctuation and more rapid pH decline as a result of both natural and anthropogenic influences in contrast to open ocean environments. Such variations in pH have the potential to pose a threat to the survival and physiological function of offshore fishes. With the aim of evaluating the impact of short-term pH reduction on the behavioral performance and physiological response of costal fish, the black rockfish (Sebastes schlegelii), one of the principal stock-enhanced species, was examined. In the present study, juveniles of the black rockfish with a mean body length of 6.9 ± 0.3 cm and weight of 8.5 ± 0.5 g were exposed to a series of pHs, 7.0, 7.2, 7.4, 7.6, 7.8, and normal seawater (pH 8.0) for 96 h. At the predetermined time points post-exposure (i.e., 0, 12, 24, 48, and 96 h), fish movement behavior was recorded and the specimens were sampled to assess their physiological responses. The results indicate that the lowered pH environment (pH 7.0-7.8) elicited a significant increase in highly mobile behavior, a decrease in immobile behavior, and a significant rise in the metabolic levels of the black rockfish juveniles. Specifically, carbohydrate metabolism was significantly elevated in the pH 7.2 and 7.4 treatments, while lipid metabolism was significantly increased in the pH 7.0, 7.4, and 7.8 treatments. The results of the present study indicate that short-term reductions in pH could ramp up boldness and boost energy expenditure in the black rockfish juveniles, leading to an increased metabolic cost. Additionally, the present investigation revealed that the black rockfish juveniles were capable of adapting to a short-term pH reduction. The findings may provide insight into the underlying physiological mechanisms that govern fish responses to potential decreases in seawater pH in the future.
Collapse
Affiliation(s)
- Haixia Li
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Jia Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Xiaoyu Ge
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Songmeng Chen
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Zhen Ma
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
3
|
Dias M, Paula JR, Pousão-Ferreira P, Casal S, Cruz R, Cunha SC, Rosa R, Marques A, Anacleto P, Maulvault AL. Combined effects of climate change and BDE-209 dietary exposure on the behavioural response of the white seabream, Diplodus sargus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163400. [PMID: 37054799 DOI: 10.1016/j.scitotenv.2023.163400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Decabromodiphenyl-ether (BDE-209) is a persistent organic pollutant ubiquitously found in marine environments worldwide. Even though this emerging chemical contaminant is described as highly toxic, bioaccumulative and biomagnifiable, limited studies have addressed the ecotoxicological implications associated with its exposure in non-target marine organisms, particularly from a behavioural standpoint. Alongside, seawater acidification and warming have been intensifying their impacts on marine ecosystems over the years, compromising species welfare and survival. BDE-209 exposure as well as seawater acidification and warming are known to affect fish behaviour, but information regarding their interactive effects is not available. In this study, long-term effects of BDE-209 contamination, seawater acidification and warming were studied on different behavioural traits of Diplodus sargus juveniles. Our results showed that D. sargus exhibited a marked sensitivity in all the behaviour responses after dietary exposure to BDE-209. Fish exposed to BDE-209 alone revealed lower awareness of a risky situation, increased activity, less time spent within the shoal, and reversed lateralization when compared to fish from the Control treatment. However, when acidification and/or warming were added to the equation, behavioural patterns were overall altered. Fish exposed to acidification alone exhibited increased anxiety, being less active, spending more time within the shoal, while presenting a reversed lateralization. Finally, fish exposed to warming alone were more anxious and spent more time within the shoal compared to those of the Control treatment. These novel findings not only confirm the neurotoxicological attributes of brominated flame retardants (like BDE-209), but also highlight the relevance of accounting for the effects of abiotic variables (e.g. pH and seawater temperature) when investigating the impacts of environmental contaminants on marine life.
Collapse
Affiliation(s)
- Marta Dias
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - José Ricardo Paula
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Pousão-Ferreira
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| | - Susana Casal
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rebeca Cruz
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - António Marques
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Patrícia Anacleto
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Ana Luísa Maulvault
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| |
Collapse
|
4
|
Servili A, Lévêque E, Mouchel O, Devergne J, Lebigre C, Roussel S, Mazurais D, Zambonino-Infante JL. Ocean acidification alters the acute stress response of a marine fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159804. [PMID: 36349621 DOI: 10.1016/j.scitotenv.2022.159804] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The absorption of anthropogenic carbon dioxide from the atmosphere by oceans generates rapid changes in seawater carbonate system and pH, a process termed ocean acidification. Exposure to acidified water can impact the allostatic load of marine organism as the acclimation to suboptimal environments requires physiological adaptive responses that are energetically costly. As a consequence, fish facing ocean acidification may experience alterations of their stress response and a compromised ability to cope with additional stress, which may impact individuals' life traits and ultimately their fitness. In this context, we carried out an integrative study investigating the impact of ocean acidification on the physiological and behavioral stress responses to an acute stress in juvenile European sea bass. Fish were long term (11 months) exposed to present day pH/CO2 condition or acidified water as predicted by IPCC "business as usual" (RCP8.5) scenario for 2100 and subjected to netting stress (fish transfer and confinement test). Fish acclimated to acidified condition showed slower post stress return to plasma basal concentrations of cortisol and glucose. We found no clear indication of regulation in the central and interrenal tissues of the expression levels of gluco- and mineralocorticoid receptors and corticoid releasing factor. At 120 min post stress, sea bass acclimated to acidified water had divergent neurotransmitters concentrations pattern in the hypothalamus (higher serotonin levels and lower GABA and dopamine levels) and a reduction in motor activity. Our experimental data indicate that ocean acidification alters the physiological response to acute stress in European sea bass via the neuroendocrine regulation of the corticotropic axis, a response associated to an alteration of the motor behavioral profile. Overall, this study suggests that behavioral and physiological adaptive response to climate changes related constraints may impact fish resilience to further stressful events.
Collapse
Affiliation(s)
- Arianna Servili
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France.
| | - Etienne Lévêque
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - Olivier Mouchel
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - Jimmy Devergne
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - Christophe Lebigre
- UMR DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, IFREMER, INRAE, F-29280 Plouzané, France
| | - Sabine Roussel
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - David Mazurais
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | | |
Collapse
|
5
|
A Systematic Review of the Behavioural Changes and Physiological Adjustments of Elasmobranchs and Teleost’s to Ocean Acidification with a Focus on Sharks. FISHES 2022. [DOI: 10.3390/fishes7020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In recent years, much attention has been focused on the impact of climate change, particularly via ocean acidification (OA), on marine organisms. Studying the impact of OA on long-living organisms, such as sharks, is especially challenging. When the ocean waters absorb anthropogenic carbon dioxide (CO2), slow-growing shark species with long generation times may be subjected to stress, leading to a decrease in functionality. Our goal was to examine the behavioral and physiological responses of sharks to OA and the possible impacts on their fitness and resilience. We conducted a systematic review in line with PRISMA-Analyses, of previously reported scientific experiments. We found that most studies used CO2 partial pressures (pCO2) that reflect representative concentration pathways for the year 2100 (e.g., pH ~7.8, pCO2 ~1000 μatm). Since there is a considerable knowledge gap on the effect of OA on sharks, we utilized existing data on bony fish to synthesize the available knowledge. Given the similarities between the behaviors and physiology of these two superclasses’ to changes in CO2 and pH levels, there is merit in including the available information on bony fish as well. Several studies indicated a decrease in shark fitness in relation to increased OA and CO2 levels. However, the decrease was species-specific and influenced by the intensity of the change in atmospheric CO2 concentration and other anthropogenic and environmental factors (e.g., fishing, temperature). Most studies involved only limited exposure to future environmental conditions and were conducted on benthic shark species studied in the laboratory rather than on apex predator species. While knowledge gaps exist, and more research is required, we conclude that anthropogenic factors are likely contributing to shark species’ vulnerability worldwide. However, the impact of OA on the long-term stability of shark populations is not unequivocal.
Collapse
|