1
|
Virta L, Hedberg P. Declining salinity and increasing temperature reduce the diversity and resilience of benthic diatoms. Environ Microbiol 2024; 26:e16569. [PMID: 38221510 DOI: 10.1111/1462-2920.16569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
Climate change will modify the marine ecosystem in several ways, but the effects of changing climate on benthic diatoms, which are one of the most important photosynthesizing organism groups in benthic habitats, are poorly studied. We conducted a mesocosm experiment to investigate the effects of increasing temperature and decreasing salinity on the taxonomic and functional diversity of benthic diatoms. We showed that decreasing salinity affects the taxonomic and functional composition of communities, and the threshold salinity for community composition is ~5. This indicates that when climate change leads to decreasing salinity in brackish systems, the most pronounced changes in communities occur in areas where salinity decreases from >5 to <5. We also showed that both increasing temperature and decreasing salinity exert stress on communities and, hence, lead to the decrease of the alpha and beta diversity of communities. This indicates that climate change reduces the size of the species pool of diatoms. Our results show that, along with the changing climate, we can expect benthic diatom communities to become less diverse and less resilient.
Collapse
Affiliation(s)
- Leena Virta
- Tvärminne Zoological Station, University of Helsinki, Helsinki, Finland
| | - Per Hedberg
- Tvärminne Zoological Station, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Zi F, Wang B, Yang L, Huo Q, Wang Z, Ren D, Huo B, Song Y, Chen S. Ecology of Saline Watersheds: An Investigation of the Functional Communities and Drivers of Benthic Fauna in Typical Water Bodies of the Irtysh River Basin. BIOLOGY 2024; 13:27. [PMID: 38248458 PMCID: PMC10813219 DOI: 10.3390/biology13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
In this study, we investigated how changes in salinity affect biodiversity and function in 11 typical water bodies in the Altai region. The salinity of the freshwater bodies ranged from 0 to 5, the brackish water salinities ranged from 5 to 20, and the hypersaline environments had salinities > 20. We identified 11 orders, 34 families, and 55 genera in 3061 benthic samples and classified them into 10 traits and 32 categories. Subsequently, we conducted Mantel tests and canonical correlation analysis (CCA) and calculated biodiversity and functional diversity indices for each sampling site. The results indicated that biodiversity and the proportion of functional traits were greater in freshwater environments than in saline environments and decreased gradually with increasing salinity. Noticeable shifts in species distribution were observed in high-salinity environments and were accompanied by specific functional traits such as swimming ability, smaller body sizes, and air-breathing adaptations. The diversity indices revealed that the species were more evenly distributed in high-diversity environments under the influence of salinity. In contrast, in high-salinity environments, only a few species dominated. The results suggested that increasing salinity accelerated the evolution of benthic communities, leading to reduced species diversity and functional homogenization. We recommend enhancing the monitoring of saline water resources and implementing sustainable water resource management to mitigate the impact of salinity stress on aquatic communities in response to climate-induced soil and water salinization.
Collapse
Affiliation(s)
- Fangze Zi
- Tarim Research Center of Rare Fishes, College of Life Sciences and Technology, Tarim University, Alar 843300, China; (F.Z.); (L.Y.); (Q.H.); (Z.W.); (D.R.)
| | - Baoqiang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Liting Yang
- Tarim Research Center of Rare Fishes, College of Life Sciences and Technology, Tarim University, Alar 843300, China; (F.Z.); (L.Y.); (Q.H.); (Z.W.); (D.R.)
| | - Qiang Huo
- Tarim Research Center of Rare Fishes, College of Life Sciences and Technology, Tarim University, Alar 843300, China; (F.Z.); (L.Y.); (Q.H.); (Z.W.); (D.R.)
| | - Zhichao Wang
- Tarim Research Center of Rare Fishes, College of Life Sciences and Technology, Tarim University, Alar 843300, China; (F.Z.); (L.Y.); (Q.H.); (Z.W.); (D.R.)
| | - Daoquan Ren
- Tarim Research Center of Rare Fishes, College of Life Sciences and Technology, Tarim University, Alar 843300, China; (F.Z.); (L.Y.); (Q.H.); (Z.W.); (D.R.)
| | - Bin Huo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yong Song
- Tarim Research Center of Rare Fishes, College of Life Sciences and Technology, Tarim University, Alar 843300, China; (F.Z.); (L.Y.); (Q.H.); (Z.W.); (D.R.)
| | - Shengao Chen
- Tarim Research Center of Rare Fishes, College of Life Sciences and Technology, Tarim University, Alar 843300, China; (F.Z.); (L.Y.); (Q.H.); (Z.W.); (D.R.)
| |
Collapse
|
3
|
Dou Z, Cui L, Li W, Lei Y, Zuo X, Cai Y, Yan R. Effect of freshwater on plant species diversity and interspecific associations in coastal wetlands invaded by Spartina alterniflora. FRONTIERS IN PLANT SCIENCE 2022; 13:965426. [PMID: 36212281 PMCID: PMC9532953 DOI: 10.3389/fpls.2022.965426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Plant invasions in coastal wetlands lead to the degradation of native vegetation; the introduction of freshwater in coastal wetlands would prevent the spread of invasive plants and facilitate the restoration of native vegetation. In this study, we evaluated the effects of freshwater on plant communities in the coastal wetlands of Yancheng, China, invaded by Spartina alterniflora Loisel. Two field investigations were conducted in 2008 and 2018 before and after the introduction of freshwater (started in 2011). The characteristics of plant communities were subjected to hierarchical cluster analysis and compared using several diversity indices. In addition, differences in habitat community composition and interspecific relationships of dominant species were analyzed. The results showed that S. alterniflora reduced the overall species diversity in the region. Plant species diversity increased after freshwater was introduced into the study site when compared to the areas without freshwater introduction. The introduction of freshwater caused a shift often changes in the interspecific relationships between Suaeda salsa (L.) Pall. and other species. The intensified invasion of S. alterniflora changed the interspecific relationship of native halophytes from negative to positive. Although freshwater effectively inhibited further invasion of S. alterniflora, it also increased the risk of expansion of the glycophytes in the community. The results of this study highlight the need for early intervention for restoration of coastal wetlands, preservation of biodiversity, and management of plant resources.
Collapse
Affiliation(s)
- Zhiguo Dou
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Lijuan Cui
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
| | - Wei Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Yinru Lei
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Xueyan Zuo
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
| | - Yang Cai
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
| | - Rui Yan
- Yancheng Milu Institute, Jiangsu Dafeng Père David's Deer National Nature Reserve, Yancheng, China
| |
Collapse
|
4
|
Zhao Y, Wang G, Zhao M, Wang M, Jiang M. Direct and indirect effects of soil salinization on soil seed banks in salinizing wetlands in the Songnen Plain, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152035. [PMID: 34856265 DOI: 10.1016/j.scitotenv.2021.152035] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Soil salinization has become a widespread threat to the structure and ecological functioning of inland wetlands globally. Soil seed banks can be important for plant regeneration in salinizing wetlands. To explore the effects of soil salinization on soil seed banks and their potential role in revegetation, we studied the structure and composition of plant communities and soil seed banks along a soil salinization gradient, and analyzed the responses of Carex-dominated and Phragmites-dominated communities to saline-alkaline stress in the Songnen Plain, China. We found that the dominant species of aboveground vegetation were different along the soil salinization gradient. Carex spp. dominated in the non-salinized and mild salinity wetlands, and Phragmites australis dominated in wetlands with moderate and high levels of salinity. The species richness of aboveground vegetation, and the density and richness of soil seed banks were higher in wetlands with lower salinity. The structural equation model indicated that the difference in soil salinization was directly associated with the aboveground species richness, and density and richness of the soil seed banks, while it was indirectly associated with the density and richness of the soil seed banks by directly affecting the composition and the species richness of the aboveground vegetation. Soil seed banks in Phragmites communities were more tolerant of saline-alkaline stress than Carex communities. This study indicates that soil salinization affects the size and composition of soil seed banks and limits their role in plant regeneration in wetlands of the Songnen Plain. In addition to hydrological regulation, the reduction of soil salinity is necessary to protect and restore biodiversity in salinizing wetlands.
Collapse
Affiliation(s)
- Yantong Zhao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China.
| | - Meiling Zhao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Ming Jiang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
5
|
Cheng T, Zhang J, Zhang S, Bai Y, Wang J, Li S, Javid T, Meng X, Sharma TPP. Monitoring soil salinization and its spatiotemporal variation at different depths across the Yellow River Delta based on remote sensing data with multi-parameter optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24269-24285. [PMID: 34822087 DOI: 10.1007/s11356-021-17677-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Soil salinization is recognized as a key issue negatively affecting agricultural productivity and wetland ecology. It is necessary to develop effective methods for monitoring the spatiotemporal distribution of soil salinity at a regional scale. In this study, we proposed an optimized remote sensing-based model for detecting soil salinity in different depths across the Yellow River Delta (YRD), China. A multi-dimensional model was built for mapping soil salinity, in which five types of predictive factors derived from Landsat satellite images were exacted and tested, 94 in-situ measured soil salinity samples with depths of 30-40 cm and 90-100 cm were collected to establish and validate the predicting model result. By comparing multiple linear regression (MLR) and partial least squares regression (PLSR) models with considering the correlation between predictive factors and soil salinity, we established the optimized prediction model which integrated the multi-parameter (including SWIR1, SI9, MSAVI, Albedo, and SDI) optimization approach to detect soil salinization in the YRD from 2003 to 2018. The results indicated that the estimates of soil salinity by the optimized prediction model were in good agreement with the measured soil salinity. The accuracy of the PLSR model performed better than that of the MLR model, with the R2 of 0.642, RMSE of 0.283, and MAE of 0.213 at 30-40 cm depth, and with the R2 of 0.450, RMSE of 0.276, and MAE of 0.220 at 90-100 cm depth. From 2003 to 2018, the soil salinity showed a distinct spatial heterogeneity. The soil salinization level of the coastal shoreline was higher; in contrast, lower soil salinization level occurred in the central YRD. In the last 15 years, the soil salinity at depth of 30-40 cm experienced a decreased trend of fluctuating, while the soil salinity at depth of 90-100 cm showed fluctuating increasing trend.
Collapse
Affiliation(s)
- Tiantian Cheng
- Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Jiahua Zhang
- Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China.
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Sha Zhang
- Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
| | - Yun Bai
- Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
| | - Jingwen Wang
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuaishuai Li
- Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
| | - Tehseen Javid
- Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
| | - Xianglei Meng
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Til Prasad Pangali Sharma
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| |
Collapse
|
6
|
Sun XS, Chen YH, Zhuo N, Cui Y, Luo FL, Zhang MX. Effects of salinity and concomitant species on growth of Phragmites australis populations at different levels of genetic diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146516. [PMID: 33765469 DOI: 10.1016/j.scitotenv.2021.146516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
In plant communities, genetic diversity among dominant species can not only affect the fitness of the population, but also interactions with concomitant species. Soil salinity is a common factor that influences plant growth in estuarine wetlands. However, few studies have tested whether their high genetic diversity will be beneficial for the resistance of plant populations to salinity and the presence of concomitant plants. Four different genotypes of Phragmites australis, a dominant species of the Yellow River Delta in China, were selected to construct populations with three different genotypic levels. These populations were planted either with or without concomitant species and were subjected to control or salinity treatments. At the end of treatments, growth variables of P. australis populations were measured. In response to soil salinity, the total biomass of 1-, 2-, and 4-genotype populations decreased by 35%, 24%, and 13%, respectively, indicating higher resistance of P. australis populations with high genetic diversity. Correspondingly, 2-, and 4-genotype populations showed higher biomass allocation to roots, which can maintain adequate water uptake for plants. The biomass accumulation of 1-genotype populations with concomitant plants was significantly lower compared with populations without concomitant plants; however, no significant difference was found for 4-genotype populations between both control and salinity treatments, suggesting their higher capacities when coexisting with concomitant species. However, the genotypic level of populations did not significantly affect their biomass accumulation. High genetic diversity is greatly beneficial for the resistance of P. australis populations to salinity and coexistence with other plants. This information should be considered in the construction or restoration of this species in estuarine wetlands.
Collapse
Affiliation(s)
- Xin-Sheng Sun
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yu-Han Chen
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Na Zhuo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yuan Cui
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Fang-Li Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Ming-Xiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Chi Z, Wang W, Li H, Wu H, Yan B. Soil organic matter and salinity as critical factors affecting the bacterial community and function of Phragmites australis dominated riparian and coastal wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143156. [PMID: 33131883 DOI: 10.1016/j.scitotenv.2020.143156] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 05/25/2023]
Abstract
Soil salinization poses a great threat to the natural ecosystem and interferes with the structure and function of the biological community, resulting in different vegetation distributions. However, little attention is paid to the changes in microbial community in different wetland types with the same vegetation. In this study, the Yellow River Delta was used as a model because of its typical and extensive distribution of Phragmites australis-dominated saltwater and freshwater wetlands. We investigated the differences in the structure and function of bacterial communities, as well as their relationships with soil properties in coastal (Zone A) and riparian (Zone B) wetlands. Results showed higher salinity and pH in Zone A than Zone B (p < 0.05), whereas TN (p < 0.05) and SOM were lower than those in Zone B. Significant differences existed in microbial community composition between Zones A and B. The nitrifying-bacteria Nitrospira and norank_f_Nitrosomonadaceae had high abundance in Zones A and B. Alcanivorax, Halomonas, and Marinobacter were extensively distributed in Zone A, whereas Flavobacterium and Pseudomonas were dominant in Zone B, indicating the diversity characteristics of denitrifying bacteria. Conversely, methane-oxidizing bacteria Methylophaga were significantly higher in Zone A than in Zone B (p < 0.05), indicating that high salinity was conducive to aerobic methane oxidation and that the genetic diversity at strain level endowed it with a certain denitrification potential. Salinity and SOM played important roles in shaping microbial community at phylum and genus levels. The gene abundances related to xenobiotics metabolism and repair were high in Zone A, whereas the genes encoding energy metabolism and signal transduction were relatively high in Zone B. Denitrification was more favored for the low-salinity Zone B, whereas methane oxidation was enriched in the high-salinity Zone A. Therefore, our study emphasized the importance of an in-depth understanding of the microbial-community structure and function in Phragmites australis-dominated saltwater and freshwater wetlands.
Collapse
Affiliation(s)
- Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Wenjing Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| |
Collapse
|