1
|
Yoon S, Lee J, Jang T, Choi JH, Ko M, Kim HO, Ha SJ, Lim KS, Park JA. Assessing the abundance, sources, and potential ecological risk assessment of microplastics using their particle and mass units in Uiam Lake, South Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124654. [PMID: 39098638 DOI: 10.1016/j.envpol.2024.124654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Microplastics (MPs) enter lakes through various pathways, including effluents from wastewater treatment plants (WWTPs), surface runoff, and improperly disposed of plastic waste. In this study, the extent of MPs pollution in Uiam Lake in fall of 2022 and spring of 2023 was assessed by determining both the number (n/m3) and mass concentrations (μg/m3) of MPs. Moreover, the correlation between water quality parameters and MP properties was analyzed, and an ecological risk assessment was conducted. MPs abundance was higher in spring than in fall, probably due to the lifting of coronavirus disease-19 restrictions, melting of ice, higher rainfall, and faster wind speed. Fragment was the dominant shape of the MPs collected, while polyvinyl chloride (PVC) and polyester/polyethylene terephthalate were the frequently detected polymer types of MPs in fall and spring, respectively. There was a moderate positive correlation between the number concentration of MPs and the total nitrogen, total phosphorus (T-P), and total organic carbon levels; in contrast, there was no significant relationship between the mass concentration of MPs and all water quality parameters. However, the abundance (μg/m3) of PVC and polymethyl methacrylate MPs were positively correlated with T-P and electrical conductivity. The pollution load index, polymer hazard index, and potential ecological risk index (PERI) were generally higher when the mass unit of MPs was used due to the presence of large-sized MPs composed of highly hazardous polymers (e.g., polyurethane, PVC, and alkyd). For instance, the PERI value of the WWTP effluent was at the very high level (>1200) in both seasons, regardless of the abundance unit of MPs. Therefore, WWTP effluents may have increased the ecological toxicity of MPs pollution in Uiam Lake.
Collapse
Affiliation(s)
- Soyeong Yoon
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jooyoung Lee
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Taesoon Jang
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin-Hyuk Choi
- Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Mingi Ko
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyun-Ouk Kim
- Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Suk-Jin Ha
- Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kwang Suk Lim
- Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Kim M, Ahn YR, Yoon S, Choi J, Kim H, Lim KS, Ha SJ, Park JA, Kim HO. Application of Metal-Organic Frameworks for Photocatalytic Degradation of Microplastics: Design, Challenges, and Scope. CHEMOSPHERE 2024; 366:143518. [PMID: 39419337 DOI: 10.1016/j.chemosphere.2024.143518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Microplastics (MPs), plastic particles smaller than 5 mm, are pervasive pollutants challenging wastewater treatment due to their size and hydrophobicity. They infiltrate freshwater, marine, and soil environments, posing ecological threats. In marine settings, MPs ingested by organisms cause cytokine release, cellular and DNA damage, and inflammation. As MPs enter the food chain and disrupt biological processes, their degradation is crucial. While biodegradation, pyrolysis, and chemical methods have been extensively studied, the use of metal-organic frameworks (MOFs) for MP pollution mitigation is underexplored. In this study, we explored the photocatalytic degradation mechanisms of MPs by MOFs in aquatic environments. We analyzed the hydrolysis, oxidation, and adsorption processes, while focusing on the environmentally friendly and cost-effective photocatalytic approach. Additionally, we analyzed the literature on MP decomposition for various types of MOFs, providing a detailed understanding of the degradation mechanisms specific to each MOF. Furthermore, we evaluated the degradation efficiencies of different MOFs and discussed the challenges and limitations in their application. Our study highlights the need for an integrated approach that involves the application of MOFs while considering environmental factors and safety concerns to develop effective MP degradation models. This review provides a framework for developing reliable photocatalytic materials with high MP removal and degradation efficiencies, thereby promoting the use of MOFs for marine plastic pollution mitigation.
Collapse
Affiliation(s)
- Minse Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yu-Rim Ahn
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Soyeong Yoon
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jaewon Choi
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hongbin Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kwang Suk Lim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Suk-Jin Ha
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Hyun-Ouk Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
3
|
Feng S, Lu H, Xue Y, Liu Y, Li H, Zhou C, Zhang X, Yan P. Occurrence of microplastics in the headwaters of Yellow River on the Tibetan Plateau: Source analysis and ecological risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135327. [PMID: 39111180 DOI: 10.1016/j.jhazmat.2024.135327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
The widespread occurrence of Microplastics (MPs) has aroused increasing concerns. However, the fate of MPs in remote areas remains poorly understood. Here, the spatial distribution, potential sources, and environmental risks of MPs were analyzed in the headstream of the Yellow River on the eastern Tibetan Plateau. The average MP abundances are (464.3 ± 200.9) items /m3 and (63.6 ± 34.7) items /kg in the water and sediment, respectively, with both majority polymer is polypropylene (PP) (water: 28.7 %; sediment: 25.2 %). The structural equation modeling and conditional fragmentation model were used in this study to analyze the source and impact factors of riverine MPs. According to the models, MPs were influenced by water quality parameters and anthropogenic activities. Furthermore, the source analysis through MP characteristics and statistical analysis showed that the main sources of MPs include domestic sewage, plastic waste disposal, and the use of agricultural plastic film. Moreover, the differences in MP sources along the river were distinguished by the conditional fragmentation model. The potential ecological risks of MPs were evaluated, resulting in relatively medium-to-low levels. Our findings will serve as important references for improving the understanding of the plateau environmental impacts of MP distribution in the headwaters of large rivers.
Collapse
Affiliation(s)
- Sansan Feng
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China.
| | - Yuxuan Xue
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Yunlong Liu
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| | - Hengchen Li
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Chaodong Zhou
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Xiaohan Zhang
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Pengdong Yan
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Omotola EO, Supriyanto G. Occurrence, detection and ecotoxicity of microplastics in selected environments-a systematic appraisal. Heliyon 2024; 10:e32095. [PMID: 39114069 PMCID: PMC11305261 DOI: 10.1016/j.heliyon.2024.e32095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024] Open
Abstract
Microplastics (MPs) are being released into the environment in large quantities, especially in less developed parts of the world. This group of pollutants is mostly leached into the environment through heavy plastic dumpsites, pharmaceutical and personal care product containers, hospital wastes, plastic package accessories, and litter from food packaging. Consequently, these compounds are found in different compartments of the ecosystem, such as soils, sediments, biota, and, surprisingly, drinking water. The present study systematically appraised recent studies on MP pollution in the Asian and African environments. It also summarized the trends in the methods for the environmental monitoring of MPs and the removal strategies that have been employed. From the data gathered, the two key instrumentations involved are the microscopes for visualization and the Fourier transform-infra-red (FT-IR) spectrometer to classify or characterize the MPs. Based on the surveyed works of literature, China and South Africa have relatively more information on MP contamination of diverse matrices within their countries. Meanwhile, studies on the status of MP contamination should be conducted across all countries. Hence, this study becomes an eye-opener regarding the commencement of research works on the MP contamination of the environment, especially in other Asian and African countries with little or no information. Furthermore, the literature on ecotoxicity studies of MPs was investigated to ascertain the toxic nature of these compounds. This aspect of research is vital because it serves as a prerequisite for the remediation of these compounds. Microplastics have been declared lethal to biotic components, so all hands must be on deck to continuously remove them from the environment.
Collapse
Affiliation(s)
- Elizabeth Oyinkansola Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode, PMB 2118, Nigeria
- Department of Chemistry, Airlangga University Surabaya Indonesia, Indonesia
| | - Ganden Supriyanto
- Department of Chemistry, Airlangga University Surabaya Indonesia, Indonesia
| |
Collapse
|
5
|
Gao S, Zhang S, Feng Z, Lu J, Fu G, Yu W. The ecological risk and fate of microplastics in the environmental matrices of marine ranching area in coastal water. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134570. [PMID: 38772105 DOI: 10.1016/j.jhazmat.2024.134570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The debate surrounding "source" and "sink" of microplastics (MPs) in coastal water has persisted for decades. While the transportation of MPs is influenced by surface runoff and currents, the precise transport patterns remain inadequately defined. In this study, the typical coastal habitat - marine ranching in Haizhou Bay (Jiangsu Province, China) were selected as a case study to assess the ecological risk of MPs. An enhanced framework was employed to assess the entire community characteristics of MPs in various environmental compartments, including surface water (SW), middle water (MW), bottom water (BW), sea bottom sediment (SS), and intertidal sediment (IS). The results of the assessment showed a low risk in the water column and a high risk in the sediment. PERMANOVA based on size and polymer of MPs revealed significant differences between IS and other compartments (SW, MW, BW, and SS) (P < 0.001). The co-occurrence network analysis for MP size indicated that most sites occupied central positions, while the analysis for MP polymer suggested that sites near the marine ranching area held more central positions, with sites in MW, BW, and SS being somewhat related to IS. Generalized additive model (GAM) demonstrated that MP concentration in the water correlated with Chla and nutrients, whereas MPs in sediment exhibited greater susceptibility to dissolved oxygen (DO) and salinity. We believe that except for the natural sedimentation and re-suspension of MPs in the vertical direction, MPs in bottom water may migrate to the surface water due to upwelling mediated by artificial reefs. Additionally, under the combined influence of surface runoff, currents, and tides, MPs may migrate horizontally, primarily occurring between middle and bottom water and sediments. The study recommends limiting and reducing wastewater and sewage discharge, as well as regulating fishing and aquaculture activities to control the sources and sinks of MPs in coastal water. Moreover, it advocates the implementation and strengthening of marine monitoring activities to gain a better understanding of the factors driving MP pollution in marine ranching area.
Collapse
Affiliation(s)
- Shike Gao
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Shuo Zhang
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources In the Yangtze Estuary, Shanghai 200000, China.
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jikun Lu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China
| | - Guanghui Fu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China
| | - Wenwen Yu
- Jiangsu Research Institute of Marine Fisheries, Nantong 226007, China
| |
Collapse
|
6
|
Zhang L, Li X, Li Q, Xia X, Zhang H. The effects of land use types on microplastics in river water: A case study on the mainstream of the Wei River, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:349. [PMID: 38453778 PMCID: PMC10920460 DOI: 10.1007/s10661-024-12430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024]
Abstract
Microplastics are widely found in rivers and their sediments, which will cause harm to the water ecological environment. The Wei River is a first-class tributary of the Yellow River, the fifth largest river in the world, and has vulnerable ecological environment and most sediment in the world. However, understanding how anthropogenic activities and environmental factors affect the microplastics distribution in this river is not clear. Based on this, the spatiotemporal distribution of microplastics in the Wei River were investigated. The abundance of microplastics ranged from 1033 to 8333 items/m3 and from 120 to 840 items/kg in the water and in the sediment, respectively. Fibers and fragments were the main shapes of Wei River, microplastics less than 500 μm were the main sizes, and black and white/transparent were the main colors. In Wei River, the abundance of microplastics in urban areas was higher than that in agricultural areas and mountainous areas. Furthermore, the correlation analysis revealed that microplastic abundance in the water was related to anthropogenic activities (population density, per capita GDP and distance) and environmental factors (water temperature, NH3-N, ORP), while in the sediments was correlated with anthropogenic activities (per capita GDP) and environmental factors (water temperature and NH3-N). This study reveals new patterns in microplastic pollution in the Wei River, underscoring the need for targeted environmental strategies. Our findings provide novel insights into the characteristics and distribution of microplastics, significantly adding to the current understanding of riverine microplastic pollution.
Collapse
Affiliation(s)
- Le Zhang
- College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an, 710127, China
| | - Xi Li
- College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an, 710127, China
| | - Qi Li
- College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an, 710127, China.
| | - Xiaoqiang Xia
- College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an, 710127, China
| | - Hang Zhang
- College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an, 710127, China
| |
Collapse
|
7
|
Pasquier G, Doyen P, Chaïb I, Amara R. Do tidal fluctuations affect microplastics distribution and composition in coastal waters? MARINE POLLUTION BULLETIN 2024; 200:116166. [PMID: 38377863 DOI: 10.1016/j.marpolbul.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
The hydro-meteorological conditions in marine environments are recognized to have a major impact on the transport and dispersion of microplastics (MP), although their precise effects remain poorly understood. This study investigates the effects of tidal fluctuations on MP abundance and composition in a megatidal coastal water. Waters samples were collected every ninety minutes over the course of two complete tidal cycles - one during spring tide and another during neap tide. There were no significant disparities in term of abondance, size, and composition of MPs between the samples collected during the two tidal cycles. Nevertheless, MP abundance and characteristics (morphology, size and polymer types) can be influenced over the course of a complete tidal cycle due to the impact of tidal currents and water height. This study highlights the need to consider the fluctuations of the tidal cycle when planning in-situ surveys to better assess MP pollution in coastal environments.
Collapse
Affiliation(s)
- Gabriel Pasquier
- Univ. Littoral Côte d'Opale, CNRS, IRD, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Périne Doyen
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, 62200 Boulogne-sur-Mer, France
| | - Iseline Chaïb
- Univ. Littoral Côte d'Opale, CNRS, IRD, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Rachid Amara
- Univ. Littoral Côte d'Opale, CNRS, IRD, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France.
| |
Collapse
|
8
|
Xing L, Liu H, Bolster D. Statistical-physical method for simulating the transport of microplastic-antibiotic compound pollutants in typical bay area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123339. [PMID: 38242310 DOI: 10.1016/j.envpol.2024.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Microplastics and antibiotics are emerging pollutants in the environment and have received widespread attention globally. In coastal areas, microplastic and antibiotic pollution is ubiquitous and often overlapping. Microplastic-antibiotic compound pollutants that are formed through adsorption have thus become a major concern. However, modeling knowledge of microplastic transport in coastal areas is still limited, and research on the impact of compound pollutants caused by Polythene (PE)-antibiotics in such settings is in early stages. In this study, using a lattice Boltzmann method (LBM) and temporal Markov method (TMM) under a statistical-physical framework, we simulated pollutant transport and PE-antibiotic compound pollutants in coastal areas. First, a series of models are proposed, including an LBM wave-current coupling model, an LBM antibiotic transport model, an LBM particle-tracking model, a TMM microplastic transport model and the final LBM-TMM hybrid compound pollutant model. Then, the suitability and applicability of the models was validated using experimental data and numerical simulations. Finally, the models were applied to a study area, Laizhou Bay (China). The simulation results demonstrate that adsorption will reduce the concentration of antibiotics in the water environment. Within 44 days, the adsorbed antibiotic carried by PE particles migrate further, and the width of the pollution zone escalates from 234.2 m to 689.0 m.
Collapse
Affiliation(s)
- Liming Xing
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Haifei Liu
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Diogo Bolster
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 46556 IN, USA
| |
Collapse
|
9
|
Ji X, Yan S, He Y, He H, Liu H. Distribution Characteristics of Microplastics in Surface Seawater off the Yangtze River Estuary Section and Analysis of Ecological Risk Assessment. TOXICS 2023; 11:889. [PMID: 37999541 PMCID: PMC10674722 DOI: 10.3390/toxics11110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
Microplastics are widespread in the oceans as a new type of pollutant. Due to the special geographical environment characteristics, the Yangtze River estuary region become hotspot for microplastics research. In 2017 and 2019, surface seawater microplastics samples were collected from five stations off the Yangtze River estuary during four seasons (spring, summer, autumn, and winter). The abundance and characteristics of microplastics in seawater were researched. The results showed that microplastics widely existed in surface seawater; the average abundance of microplastics in seawater was (0.17 ± 0.14) items/m3 (0.00561 ± 0.00462) mg/m3; and accounting for 80% of the total plastic debris, the abundance of microplastics was at moderately low levels compared to national and international studies. The particle size of most microplastics was between 1 mm to 2 mm, accounting for 36.1% of the total microplastics. The main shapes of microplastics were fiber, flake, and line, accounting for 39.5%, 28.4%, and 20.8%, respectively. Polypropylene, polyethylene terephthalate, and polyethylene were the main components of microplastics, accounting for 41.0%, 25.1%, and 24.9%, respectively. Yellow, green, black, and transparent were the most common colors, accounting for 21.9%, 19.6%, 16.5%, and 15.7%, respectively. This study shows that the spatial distribution of microplastics in the surface waters off the Yangtze River estuary shows a decreasing trend from nearshore to farshore due to the influence of land-based inputs, hydrodynamics, and human activities; the distribution of microplastics has obvious seasonal changes, and the level of microplastic pollution is higher in summer. The potential ecological risk of microplastics in the surface waters off the Yangtze River estuary is relatively small.
Collapse
Affiliation(s)
- Xiao Ji
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China; (X.J.); (S.Y.); (Y.H.); (H.H.)
- Key Laboratory of Marine Ecological Monitoring and Restoration Technology, Ministry of Natural Resources, Shanghai 201206, China
| | - Shuaishuai Yan
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China; (X.J.); (S.Y.); (Y.H.); (H.H.)
| | - Yanlong He
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China; (X.J.); (S.Y.); (Y.H.); (H.H.)
| | - Haisheng He
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China; (X.J.); (S.Y.); (Y.H.); (H.H.)
| | - Hanqi Liu
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China; (X.J.); (S.Y.); (Y.H.); (H.H.)
- Key Laboratory of Marine Ecological Monitoring and Restoration Technology, Ministry of Natural Resources, Shanghai 201206, China
| |
Collapse
|