1
|
A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species. J Comp Physiol B 2022; 192:737-750. [PMID: 36104549 PMCID: PMC9550766 DOI: 10.1007/s00360-022-01461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022]
Abstract
Notothenioidei fishes have evolved under stable cold temperatures; however, ocean conditions are changing globally, with polar regions poised to experience the greatest changes in environmental factors, such as warming. These stressors have the potential to dramatically affect energetic demands, and the persistence of the notothenioids will be dependent on metabolic capacity, or the ability to match energy supply with energy demand, to restore homeostasis in the face of changing climate conditions. In this study we examined aerobic metabolic capacity in three species, Trematomus bernacchii, T. pennellii and T. newnesi, and between two life stages, juvenile and adult, by assessing mitochondrial function of permeabilized cardiac fibers. Respiratory capacity differed among the adult notothenioids in this study, with greater oxidative phosphorylation (OXPHOS) respiration in the pelagic T. newnesi than the benthic T. bernacchii and T. pennellii. The variation in mitochondrial respiratory capacity was likely driven by differences in the mitochondrial content, as measured by citrate synthase activity, which was the highest in T. newnesi. In addition to high OXPHOS, T. newnesi exhibited lower LEAK respiration, resulting in greater mitochondrial efficiency than either T. bernacchii or T. pennellii. Life stage largely had an effect on mitochondrial efficiency and excess complex IV capacity, but there were little differences in OXPHOS respiration and electron transfer capacity, pointing to a lack of significant differences in the metabolic capacity between juveniles and adults. Overall, these results demonstrate species-specific differences in cardiac metabolic capacity, which may influence the acclimation potential of notothenioid fishes to changing environmental conditions.
Collapse
|
2
|
Segovia NI, González-Wevar CA, Naretto J, Rosenfeld S, Brickle P, Hüne M, Bernal V, Haye PA, Poulin E. The right tool for the right question: contrasting biogeographic patterns in the notothenioid fish Harpagifer spp. along the Magellan Province. Proc Biol Sci 2022; 289:20212738. [PMID: 35382596 PMCID: PMC8984805 DOI: 10.1098/rspb.2021.2738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Molecular-based analysis has become a fundamental tool to understand the role of Quaternary glacial episodes. In the Magellan Province in southern South America, ice covering during the last glacial maximum (20 ka) radically altered the landscape/seascape, speciation rates and distribution of species. For the notothenioid fishes of the genus Harpagifer, in the area are described two nominal species. Nevertheless, this genus recently colonized South America from Antarctica, providing a short time for speciation processes. Combining DNA sequences and genotyping-by-sequencing SNPs, we evaluated the role of Quaternary glaciations over the patterns of genetic structure in Harpagifer across its distribution in the Magellan Province. DNA sequences showed low phylogeographic structure, with shared and dominant haplotypes between nominal species, suggesting a single evolutionary unit. SNPs identified contrastingly two groups in Patagonia and a third well-differentiated group in the Falkland/Malvinas Islands with limited and asymmetric gene flow. Linking the information of different markers allowed us to infer the relevance of postglacial colonization mediated by the general oceanographic circulation patterns. Contrasting rough- and fine-scale genetic patterns highlights the relevance of combined methodologies for species delimitation, which, depending on the question to be addressed, allows discrimination among phylogeographic structure, discarding incipient speciation, and contemporary spatial differentiation processes.
Collapse
Affiliation(s)
- N I Segovia
- Departamento de Ciencias Ecológicas, Instituto Milenio de Ecología y Biodiversidad (IEB), Universidad de Chile. Las Palmeras 3425, Ñuñoa, Santiago, Chile.,Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.,Instituto Milenio en Socio-ecología Costera (SECOS), Coquimbo, Chile.,Instituto Milenio Biodiversidad de Ecosistemas Antárticos y subAntárticos (MI-BASE), Valdivia, Chile
| | - C A González-Wevar
- Departamento de Ciencias Ecológicas, Instituto Milenio de Ecología y Biodiversidad (IEB), Universidad de Chile. Las Palmeras 3425, Ñuñoa, Santiago, Chile.,Instituto Milenio Biodiversidad de Ecosistemas Antárticos y subAntárticos (MI-BASE), Valdivia, Chile.,Instituto de Ciencias Marinas y Limnológicas (ICML), Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.,Centro de Investigación en Dinámicas de Ecosistemas de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile
| | - J Naretto
- Costa Humboldt, Puerto Varas, Los Lagos, Chile
| | - S Rosenfeld
- Departamento de Ciencias Ecológicas, Instituto Milenio de Ecología y Biodiversidad (IEB), Universidad de Chile. Las Palmeras 3425, Ñuñoa, Santiago, Chile.,Laboratorio de Ecosistemas Antárticos y sub-Antárticos, Universidad de Magallanes, Chile
| | - P Brickle
- South Atlantic Environmental Research Institute (SAERI), PO Box 609, Stanley Cottage, Port Stanley, Falkland Islands, UK
| | - M Hüne
- Departamento de Ciencias Ecológicas, Instituto Milenio de Ecología y Biodiversidad (IEB), Universidad de Chile. Las Palmeras 3425, Ñuñoa, Santiago, Chile.,Centro de Investigación para la Conservación de los Ecosistemas Australes (ICEA), Punta Arenas, Chile
| | - V Bernal
- Departamento de Ciencias Ecológicas, Instituto Milenio de Ecología y Biodiversidad (IEB), Universidad de Chile. Las Palmeras 3425, Ñuñoa, Santiago, Chile.,Instituto Milenio Biodiversidad de Ecosistemas Antárticos y subAntárticos (MI-BASE), Valdivia, Chile
| | - P A Haye
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.,Instituto Milenio en Socio-ecología Costera (SECOS), Coquimbo, Chile
| | - E Poulin
- Departamento de Ciencias Ecológicas, Instituto Milenio de Ecología y Biodiversidad (IEB), Universidad de Chile. Las Palmeras 3425, Ñuñoa, Santiago, Chile.,Instituto Milenio Biodiversidad de Ecosistemas Antárticos y subAntárticos (MI-BASE), Valdivia, Chile
| |
Collapse
|
3
|
Daane JM, William Detrich H. Adaptations and Diversity of Antarctic Fishes: A Genomic Perspective. Annu Rev Anim Biosci 2021; 10:39-62. [PMID: 34748709 DOI: 10.1146/annurev-animal-081221-064325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antarctic notothenioid fishes are the classic example of vertebrate adaptive radiation in a marine environment. Notothenioids diversified from a single common ancestor ∼25 Mya to more than 140 species today, and they represent ∼90% of fish biomass on the continental shelf of Antarctica. As they diversified in the cold Southern Ocean, notothenioids evolved numerous traits, including osteopenia, anemia, cardiomegaly, dyslipidemia, and aglomerular kidneys, that are beneficial or tolerated in their environment but are pathological in humans. Thus, notothenioids are models for understanding adaptive radiations, physiological and biochemical adaptations to extreme environments, and genetic mechanisms of human disease. Since 2014, 16 notothenioid genomes have been published, which enable a first-pass holistic analysis of the notothenioid radiation and the genetic underpinnings of novel notothenioid traits. Here, we review the notothenioid radiation from a genomic perspective and integrate our insights with recent observations from other fish radiations. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jacob M Daane
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| |
Collapse
|
4
|
Bowen BW, Forsman ZH, Whitney JL, Faucci A, Hoban M, Canfield SJ, Johnston EC, Coleman RR, Copus JM, Vicente J, Toonen RJ. Species Radiations in the Sea: What the Flock? J Hered 2021; 111:70-83. [PMID: 31943081 DOI: 10.1093/jhered/esz075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Species flocks are proliferations of closely-related species, usually after colonization of depauperate habitat. These radiations are abundant on oceanic islands and in ancient freshwater lakes, but rare in marine habitats. This contrast is well documented in the Hawaiian Archipelago, where terrestrial examples include the speciose silverswords (sunflower family Asteraceae), Drosophila fruit flies, and honeycreepers (passerine birds), all derived from one or a few ancestral lineages. The marine fauna of Hawai'i is also the product of rare colonization events, but these colonizations usually yield only one species. Dispersal ability is key to understanding this evolutionary inequity. While terrestrial fauna rarely colonize between oceanic islands, marine fauna with pelagic larvae can make this leap in every generation. An informative exception is the marine fauna that lack a pelagic larval stage. These low-dispersal species emulate a "terrestrial" mode of reproduction (brooding, viviparity, crawl-away larvae), yielding marine species flocks in scattered locations around the world. Elsewhere, aquatic species flocks are concentrated in specific geographic settings, including the ancient lakes of Baikal (Siberia) and Tanganyika (eastern Africa), and Antarctica. These locations host multiple species flocks across a broad taxonomic spectrum, indicating a unifying evolutionary phenomenon. Hence marine species flocks can be singular cases that arise due to restricted dispersal or other intrinsic features, or they can be geographically clustered, promoted by extrinsic ecological circumstances. Here, we review and contrast intrinsic cases of species flocks in individual taxa, and extrinsic cases of geological/ecological opportunity, to elucidate the processes of species radiations.
Collapse
Affiliation(s)
- Brian W Bowen
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Zac H Forsman
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Jonathan L Whitney
- Joint Institute for Marine and Atmospheric Research, University of Hawai'i, Honolulu, HI
| | - Anuschka Faucci
- Math & Sciences Division, Leeward Community College, University of Hawai'i, Pearl City, HI
| | - Mykle Hoban
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | | | - Erika C Johnston
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Richard R Coleman
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Joshua M Copus
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Jan Vicente
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| |
Collapse
|
5
|
Deli Antoni MY, Delpiani SM, González-Castro M, Blasina GE, Spath MC, Depiani GE, Ashikaga FY, Cruz VP, Oliveira C, de Astarloa JMD. Comparative populational study of Lepidonotothen larseni and L. nudifrons (Teleostei: Nototheniidae) from the Antarctic Peninsula and the South Shetland Islands, Antarctica. Polar Biol 2019. [DOI: 10.1007/s00300-019-02540-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Heindler FM, Christiansen H, Frédérich B, Dettaï A, Lepoint G, Maes GE, Van de Putte AP, Volckaert FAM. Historical DNA Metabarcoding of the Prey and Microbiome of Trematomid Fishes Using Museum Samples. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
7
|
Chenuil A, Saucède T, Hemery LG, Eléaume M, Féral JP, Améziane N, David B, Lecointre G, Havermans C. Understanding processes at the origin of species flocks with a focus on the marine Antarctic fauna. Biol Rev Camb Philos Soc 2017; 93:481-504. [DOI: 10.1111/brv.12354] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Anne Chenuil
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE-UMR7263); Aix-Marseille Univ, Univ Avignon, CNRS, IRD, Station Marine d'Endoume, Chemin de la Batterie des Lions; F-13007 Marseille France
| | - Thomas Saucède
- UMR6282 Biogéosciences; CNRS - Université de Bourgogne Franche-Comté, 6 boulevard Gabriel; F-21000 Dijon France
| | - Lenaïg G. Hemery
- DMPA, UMR 7208 BOREA/MNHN/CNRS/Paris VI/ Univ Caen, 57 rue Cuvier; 75231 Paris Cedex 05 France
| | - Marc Eléaume
- UMR7205 Institut de Systématique; Evolution et Biodiversité, CNRS-MNHN-UPMC-EPHE, CP 24, Muséum national d'Histoire naturelle, 57 rue Cuvier; 75005 Paris France
| | - Jean-Pierre Féral
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE-UMR7263); Aix-Marseille Univ, Univ Avignon, CNRS, IRD, Station Marine d'Endoume, Chemin de la Batterie des Lions; F-13007 Marseille France
| | - Nadia Améziane
- UMR7205 Institut de Systématique; Evolution et Biodiversité, CNRS-MNHN-UPMC-EPHE, CP 24, Muséum national d'Histoire naturelle, 57 rue Cuvier; 75005 Paris France
| | - Bruno David
- UMR6282 Biogéosciences; CNRS - Université de Bourgogne Franche-Comté, 6 boulevard Gabriel; F-21000 Dijon France
- Muséum national d'Histoire naturelle, 57 rue Cuvier; 75005 Paris France
| | - Guillaume Lecointre
- UMR7205 Institut de Systématique; Evolution et Biodiversité, CNRS-MNHN-UPMC-EPHE, CP 24, Muséum national d'Histoire naturelle, 57 rue Cuvier; 75005 Paris France
| | - Charlotte Havermans
- Marine Zoology, Bremen Marine Ecology (BreMarE); University of Bremen, PO Box 330440; 28334 Bremen Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12; D-27570 Bremerhaven Germany
- OD Natural Environment; Royal Belgian Institute of Natural Sciences, Rue Vautier 29; B-1000 Brussels Belgium
| |
Collapse
|
8
|
Moon KL, Chown SL, Fraser CI. Reconsidering connectivity in the sub-Antarctic. Biol Rev Camb Philos Soc 2017; 92:2164-2181. [DOI: 10.1111/brv.12327] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Katherine L. Moon
- School of Biological Sciences; Monash University; Clayton 3800 Australia
- Fenner School of Environment and Society; Australian National University; Acton 2601 Australia
| | - Steven L. Chown
- School of Biological Sciences; Monash University; Clayton 3800 Australia
| | - Ceridwen I. Fraser
- Fenner School of Environment and Society; Australian National University; Acton 2601 Australia
| |
Collapse
|
9
|
Li X, Deng Y, Yang K, Gan W, Zeng R, Deng L, Song Z. Genetic Diversity and Structure Analysis of Percocypris pingi (Cypriniformes: Cyprinidae): Implications for Conservation and Hatchery Release in the Yalong River. PLoS One 2016; 11:e0166769. [PMID: 27911911 PMCID: PMC5135059 DOI: 10.1371/journal.pone.0166769] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/03/2016] [Indexed: 11/19/2022] Open
Abstract
Percocypris pingi is a near threatened cyprinid species, which has suffered a dramatic decline due to anthropogenic factors. As one response to this decline, hatchery release for P. pingi has been conducted in the lower reaches of the Yalong River since 2012. To understand the conservation status of this species and the potential impact of the release of hatchery-reared fish, we studied the genetic diversity and population structure of wild and hatchery populations of P. pingi. Two hatchery populations (Jinping [JPH] and Ya’an [YAH]) and two wild populations (Muli [MLW] and Woluo [WLW]) of P. pingi were analyzed based on microsatellite markers and the mitochondrial DNA control region. The results showed that P. pingi possesses moderate levels of genetic diversity, with observed heterozygosities ranging from 0.657 to 0.770 and nucleotide diversities ranging from 0.00212 to 0.00491. Our results also suggested WLW harbors considerable proportions of genetic diversity in this species and serves as a refuge for P. pingi during anthropogenic disturbance, thus playing an important role for the conservation of P. pingi populations. Microsatellite and mitochondrial markers both indicated close genetic relationships between YAH and MLW, JPH and WLW, respectively. The results to some extent reflected the geographical provenances for original broodstocks of the two hatchery populations, which provide some practical guidance for hatchery release of P. pingi. The existence of remarkable genetic divergence distributed along limited geographical range (approximately 10 kilometers) suggests the two wild populations should be regarded at least as two distinct evolutionary significant units (ESUs) and management units (MUs). Considering reduced intra-population genetic variation in hatchery population for release and significant genetic compositions of the two hatchery populations, some appropriate breeding strategies were proposed to benefit conservation of P. pingi.
Collapse
Affiliation(s)
- Xiaoyan Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuanping Deng
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kun Yang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Weixiong Gan
- Yalong River Hydropower Development Company, Ltd., Chengdu, China
| | - Rukui Zeng
- Yalong River Hydropower Development Company, Ltd., Chengdu, China
| | - Longjun Deng
- Yalong River Hydropower Development Company, Ltd., Chengdu, China
| | - Zhaobin Song
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
10
|
Buonocore F, Bernini C, Coscia MR, Giacomelli S, de Pascale D, Randelli E, Stocchi V, Scapigliati G. Immune response of the Antarctic teleost Trematomus bernacchii to immunization with Psychrobacter sp. (TAD1). FISH & SHELLFISH IMMUNOLOGY 2016; 56:192-198. [PMID: 27417227 DOI: 10.1016/j.fsi.2016.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/28/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
Adult Trematomus bernacchii have been immunized intraperitoneally with heat-killed cells of the Antarctic marine bacterium Psychrobacter sp. (TAD1) up to 60 days. After immunizations and sampling at various times, fish sera were tested for specific IgM by ELISA, and different tissues (head kidney and spleen) were investigated for transcription of master genes of the acquired immune response (IgM, IgT, TRβ, TRγ). Results from ELISA assays showed a time-dependent induction of specific serum anti-TAD1 IgM, and western blot analysis of TAD1 lysates probed with fish sera revealed enhanced immunoreactivity in immunized animals compared to controls. Quantitative PCR analysis of transcripts coding for IgM, IgT, TRβ, TRγ was performed in T. bernacchii tissues to assess basal expression, and then on cDNAs of cells from head kidney and spleen of fish injected for 8, 24, and 72 h with inactivated TAD1. The results showed a differential basal expression of transcripts in the examined tissues, and a time-dependent strong up-regulation of IgT, TRβ, TRγ genes upon in vivo stimulation with TAD1. These results represent a first in vivo study on the mounting of a specific immune response in an Antarctic teleost species.
Collapse
Affiliation(s)
- Francesco Buonocore
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - Chiara Bernini
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - Maria Rosaria Coscia
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Stefano Giacomelli
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Donatella de Pascale
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Elisa Randelli
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - Valentina Stocchi
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - Giuseppe Scapigliati
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy.
| |
Collapse
|
11
|
Kašparová E, Van de Putte AP, Marshall C, Janko K. Lifestyle and Ice: The Relationship between Ecological Specialization and Response to Pleistocene Climate Change. PLoS One 2015; 10:e0138766. [PMID: 26535569 PMCID: PMC4636791 DOI: 10.1371/journal.pone.0138766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
Major climatic changes in the Pleistocene had significant effects on marine organisms and the environments in which they lived. The presence of divergent patterns of demographic history even among phylogenetically closely-related species sharing climatic changes raises questions as to the respective influence of species-specific traits on population structure. In this work we tested whether the lifestyle of Antarctic notothenioid benthic and pelagic fish species from the Southern Ocean influenced the concerted population response to Pleistocene climatic fluctuations. This was done by a comparative analysis of sequence variation at the cyt b and S7 loci in nine newly sequenced and four re-analysed species. We found that all species underwent more or less intensive changes in population size but we also found consistent differences between demographic histories of pelagic and benthic species. Contemporary pelagic populations are significantly more genetically diverse and bear traces of older demographic expansions than less diverse benthic species that show evidence of more recent population expansions. Our findings suggest that the lifestyles of different species have strong influences on their responses to the same environmental events. Our data, in conjunction with previous studies showing a constant diversification tempo of these species during the Pleistocene, support the hypothesis that Pleistocene glaciations had a smaller effect on pelagic species than on benthic species whose survival may have relied upon ephemeral refugia in shallow shelf waters. These findings suggest that the interaction between lifestyle and environmental changes should be considered in genetic analyses.
Collapse
Affiliation(s)
- Eva Kašparová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Kvetna 8, 603 65, Brno, Czech Republic
- * E-mail: (EK); (KJ)
| | - Anton P. Van de Putte
- Laboratory of Biodiversity and Evolutionary Genomics, Katholieke Universiteit Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Craig Marshall
- Department of Biochemistry, and Genetics Otago, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Kvetna 8, 603 65, Brno, Czech Republic
- Centre for Polar Ecology, University of South Bohemia in Ceské Budejovice, Na Zlate stoce 3, 370 05, Ceske Budejovice, Czech Republic
- Life Science Research Centre, Department of Biology and Ecology, Faculty of Natural Sciences, University of Ostrava, Chittussiho 10, 710 00 Silesian Ostrava, Czech Republic
- * E-mail: (EK); (KJ)
| |
Collapse
|
12
|
Damerau M, Matschiner M, Salzburger W, Hanel R. Population divergences despite long pelagic larval stages: lessons from crocodile icefishes (Channichthyidae). Mol Ecol 2013; 23:284-99. [DOI: 10.1111/mec.12612] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 11/28/2022]
Affiliation(s)
- M. Damerau
- Thünen-Institute of Fisheries Ecology; Palmaille 9 22767 Hamburg Germany
| | - M. Matschiner
- Department of Mathematics and Statistics; Allan Wilson Centre of Molecular Ecology and Evolution; University of Canterbury; Private Bag 4800 Christchurch New Zealand
- Zoological Institute; University of Basel; Vesalgasse 1 4051 Basel Switzerland
| | - W. Salzburger
- Zoological Institute; University of Basel; Vesalgasse 1 4051 Basel Switzerland
| | - R. Hanel
- Thünen-Institute of Fisheries Ecology; Palmaille 9 22767 Hamburg Germany
| |
Collapse
|