1
|
Zhao N, Jia L, Deng Q, Zhu C, Zhang B. Comparative piRNAs Profiles Give a Clue to Transgenerational Inheritance of Sex-Biased piRNAs in Cynoglossus semilaevis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:335-344. [PMID: 35290559 DOI: 10.1007/s10126-022-10109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Piwi interacting RNAs (piRNAs) are involved in the epigenetic and post-transcriptional gene silencing of retrotransposons in germ line cells, especially in spermatogenesis. There are many related reports on model organisms, such as flies and mice. In fish, however, there are few studies on piRNAs. Cynoglossus semilaevis, a benthic warm water flatfish, with remarkable sexual dimorphism, especially the "pseudo males" with sex reversal, mating with normal females to produce viable offspring, is an ideal material for the study of sex development. Here, sperm piwi-interacting RNAs profiles of Cynoglossus semilaevis were characterized, comparing between male and pseudomale groups. Differential piRNAs were identified with their predicted and annotated targets. Attention was then focused on candidate piRNAs associated with sex development and methylation. We continued to compare the expression levels of 10 candidates differentially expressed piRNAs in F1 spermatozoa. Quantitative RT-PCR demonstrated that five of the ten piRNAs showed sex bias consistent with parental sequencing results, with four significantly higher expression level in sperm of five males offspring than that of pseudomales, while one piRNAs showed the opposite expression profile. The five signature piRNAs (piR-mmu-49600337, piR-mmu-95849, piR-xtr-7474223, piR-xtr-1790334, and piR-mmu-4491546) could be employed as male-specific molecular biomarkers for C. semilaevis. Besides, this study also implied the possibility of transgenerational inheritance of sex-biased piRNAs exiting in sperm of Cynoglossus semilaevis.
Collapse
Affiliation(s)
- Na Zhao
- Fisheries College, Guangdong Ocean University, 524000, Guangdong, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, 300201, China
| | - Qiuxia Deng
- Fisheries College, Guangdong Ocean University, 524000, Guangdong, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Chunhua Zhu
- Fisheries College, Guangdong Ocean University, 524000, Guangdong, People's Republic of China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.
| | - Bo Zhang
- Fisheries College, Guangdong Ocean University, 524000, Guangdong, People's Republic of China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.
| |
Collapse
|
2
|
Wei J, Chen Y, Wang W. A High-Density Genetic Linkage Map and QTL Mapping for Sex and Growth-Related Traits of Large-Scale Loach ( Paramisgurnus dabryanus). Front Genet 2019; 10:1023. [PMID: 31708968 PMCID: PMC6823184 DOI: 10.3389/fgene.2019.01023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022] Open
Abstract
Large-scale loach (Paramisgurnus dabryanus) is a commercially important species in East Asia; however, the cultured population that exhibited degradation of germplasm resource cannot meet the market needs, and the genome resources for P. dabryanus are still lacking. In this study, the first high-density genetic map of P. dabryanus was constructed using 15,830 SNP markers based on high-throughput sequencing with an improved SLAF-seq strategy. The quantitative trait locus (QTL) mapping for sex, growth, and morphology traits was performed for the first time. The genetic map spanned 4,657.64 cM in length with an average inter-marker distance of 0.30 cM. QTL mapping and association analysis identified eight QTLs of growth traits, nine QTLs of morphology traits, and five QTLs of sex-related traits, respectively. Interestingly, the most significant QTLs for almost all the traits were concentrated on the same linkage group LG11. Seven candidate markers and 12 potentially key genes, which were associated with sex determination and growth, were identified within the overlapped QTL regions on LG11. Further, the first genome survey analysis of P. dabryanus was performed which represents the first step toward fully decoding the P. dabryanus genome. The genome scaffolds were anchored to the high-density linkage map, spanning 960.27 Mb of P. dabryanus reference genome. The collinearity analysis revealed a high level of collinearity between the genetic map and the reference genome of P. dabryanus. Moreover, a certain degree of homology was observed between large-scale loach and zebrafish using comparative genomic analysis. The constructed high-density genetic map was an important basis for QTL fine mapping, genome assembly, and genome comparison. The present study will provide a valuable resource for future marker-assisted breeding, and further genetic and genomic researches in P. dabryanus.
Collapse
Affiliation(s)
- Jin Wei
- Key Lab of Agricultural Animal Genetics, College of Fisheries, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Chen
- Key Lab of Agricultural Animal Genetics, College of Fisheries, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Weimin Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Sawayama E, Tanizawa S, Kitamura SI, Nakayama K, Ohta K, Ozaki A, Takagi M. Identification of Quantitative Trait Loci for Resistance to RSIVD in Red Sea Bream (Pagrus major). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:601-613. [PMID: 29127523 DOI: 10.1007/s10126-017-9779-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Red sea bream iridoviral disease (RSIVD) is a major viral disease in red sea bream farming in Japan. Previously, we identified one candidate male individual of red sea bream that was significantly associated with convalescent individuals after RSIVD. The purpose of this study is to identify the quantitative trait loci (QTL) linked to the RSIVD-resistant trait for future marker-assisted selection (MAS). Two test families were developed using the candidate male in 2014 (Fam-2014) and 2015 (Fam-2015). These test families were challenged with RSIV, and phenotypes were evaluated. Then, de novo genome sequences of red sea bream were obtained through next-generation sequencing, and microsatellite markers were searched and selected for linkage map construction. One immune-related gene, MHC class IIβ, was also used for linkage map construction. Of the microsatellite markers searched, 148 and 197 were mapped on 23 and 27 linkage groups in the female and male linkage maps, respectively, covering approximately 65% of genomes in both sexes. One QTL linked to an RSIVD-resistant trait was found in linkage group 2 of the candidate male in Fam-2014, and the phenotypic variance of the QTL was 31.1%. The QTL was closely linked to MHC class IIβ. Moreover, the QTL observed in Fam-2014 was also significantly linked to an RSIVD-resistant trait in the candidate male of Fam-2015. Our results suggest that the RSIVD-resistant trait in the candidate male was controlled by one major QTL closely linked to the MHC class IIβ gene and could be useful for MAS of red sea bream.
Collapse
Affiliation(s)
- Eitaro Sawayama
- R&D Division, Marua Suisan Co., Ltd., 4472 Iwagi, Kamijima-cho, Ochi-gun, Ehime, 794-2410, Japan.
| | - Shiho Tanizawa
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Shin-Ichi Kitamura
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Kohei Ohta
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Akiyuki Ozaki
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhamaura, Minamiise-cho, Watarai-gun, Mie, 516-0193, Japan
| | - Motohiro Takagi
- South Ehime Fisheries Research Center, Ehime University, 1289-1 Funakoshi, Ainan-cho, Ehime, 790-8566, Japan
| |
Collapse
|
4
|
Tian C, Guo W, Liang XF, Sun L, Lv L, Zhao C, Song Y, He S. Identification of species-specific microsatellite markers in three Siniperca species by RNA-Seq. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2016.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Robledo D, Hermida M, Rubiolo JA, Fernández C, Blanco A, Bouza C, Martínez P. Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 21:41-55. [PMID: 28063346 DOI: 10.1016/j.cbd.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Flatfish have a high market acceptance thus representing a profitable aquaculture production. The main farmed species is the turbot (Scophthalmus maximus) followed by Japanese flounder (Paralichthys olivaceous) and tongue sole (Cynoglossus semilaevis), but other species like Atlantic halibut (Hippoglossus hippoglossus), Senegalese sole (Solea senegalensis) and common sole (Solea solea) also register an important production and are very promising for farming. Important genomic resources are available for most of these species including whole genome sequencing projects, genetic maps and transcriptomes. In this work, we integrate all available genomic information of these species within a common framework, taking as reference the whole assembled genomes of turbot and tongue sole (>210× coverage). New insights related to the genetic basis of productive traits and new data useful to understand the evolutionary origin and diversification of this group were obtained. Despite a general 1:1 chromosome syntenic relationship between species, the comparison of turbot and tongue sole genomes showed huge intrachromosomic reorganizations. The integration of available mapping information supported specific chromosome fusions along flatfish evolution and facilitated the comparison between species of previously reported genetic associations for productive traits. When comparing transcriptomic resources of the six species, a common set of ~2500 othologues and ~150 common miRNAs were identified, and specific sets of putative missing genes were detected in flatfish transcriptomes, likely reflecting their evolutionary diversification.
Collapse
Affiliation(s)
- Diego Robledo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Biology (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Hermida
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Juan A Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
6
|
Preliminary genetic linkage map of Indian major carp, Labeo rohita (Hamilton 1822) based on microsatellite markers. J Genet 2016; 94:271-7. [PMID: 26174674 DOI: 10.1007/s12041-015-0528-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Linkage map with wide marker coverage is an essential resource for genetic improvement study for any species. Sex-averaged genetic linkage map of Labeo rohita, popularly known as 'rohu', widely cultured in the Indian subcontinent, was developed by placing 68 microsatellite markers generated by a simplified method. The parents and their F1 progeny (92 individuals) were used as segregating populations. The genetic linkage map spans a sex-averaged total length of 1462.2 cM, in 25 linkage groups. The genome length of rohu was estimated to be 3087.9 cM. This genetic linkage map may facilitate systematic searches of the genome to identify genes associated with commercially important characters and marker-assisted selection programmes of this species.
Collapse
|