1
|
|
2
|
Chunduru J, West TP. Pyrimidine nucleotide synthesis in the emerging pathogen Pseudomonas monteilii. Can J Microbiol 2018; 64:432-438. [PMID: 29486129 DOI: 10.1139/cjm-2018-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of pyrimidine biosynthesis by pyrimidines in the emerging, opportunistic human pathogen Pseudomonas monteilii ATCC 700476 was evident. When wild-type cells were grown on succinate in the presence of uracil or orotic acid, the activities of all 5 pyrimidine biosynthetic enzymes were depressed while the activities of 3 of the enzymes decreased in glucose-grown cells supplemented with uracil or orotic acid compared with unsupplemented cells. Pyrimidine limitation of succinate- or glucose-grown pyrimidine auxotrophic cells lacking orotate phosphoribosyltransferase activity resulted in more than a doubling of the pyrimidine biosynthetic enzyme activities relative to their activities in uracil-grown cells. Independent of carbon source, pyrimidine-limited cells of the pyrimidine auxotrophic cells deficient for dihydroorotase activity generally resulted in a slight elevation or depression of the pyrimidine biosynthetic enzyme activities compared with their activities in cells grown under saturating uracil conditions. Aspartate transcarbamoylase activity in P. monteilii was regulated at the enzyme activity level, since the enzyme was strongly inhibited by CTP, UMP, GMP, GDP, ADP, and UTP. In summary, the regulation of pyrimidine biosynthesis in P. monteilii could be used to control its growth or to differentiate it biochemically from other related species of Pseudomonas.
Collapse
Affiliation(s)
- Jayendra Chunduru
- Department of Chemistry, Texas A&M University-Commerce, Commerce, TX 75429, USA.,Department of Chemistry, Texas A&M University-Commerce, Commerce, TX 75429, USA
| | - Thomas P West
- Department of Chemistry, Texas A&M University-Commerce, Commerce, TX 75429, USA.,Department of Chemistry, Texas A&M University-Commerce, Commerce, TX 75429, USA
| |
Collapse
|
3
|
Alcaraz LD, Martínez-Sánchez S, Torres I, Ibarra-Laclette E, Herrera-Estrella L. The Metagenome of Utricularia gibba's Traps: Into the Microbial Input to a Carnivorous Plant. PLoS One 2016; 11:e0148979. [PMID: 26859489 PMCID: PMC4747601 DOI: 10.1371/journal.pone.0148979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/26/2016] [Indexed: 02/01/2023] Open
Abstract
The genome and transcriptome sequences of the aquatic, rootless, and carnivorous plant Utricularia gibba L. (Lentibulariaceae), were recently determined. Traps are necessary for U. gibba because they help the plant to survive in nutrient-deprived environments. The U. gibba's traps (Ugt) are specialized structures that have been proposed to selectively filter microbial inhabitants. To determine whether the traps indeed have a microbiome that differs, in composition or abundance, from the microbiome in the surrounding environment, we used whole-genome shotgun (WGS) metagenomics to describe both the taxonomic and functional diversity of the Ugt microbiome. We collected U. gibba plants from their natural habitat and directly sequenced the metagenome of the Ugt microbiome and its surrounding water. The total predicted number of species in the Ugt was more than 1,100. Using pan-genome fragment recruitment analysis, we were able to identify to the species level of some key Ugt players, such as Pseudomonas monteilii. Functional analysis of the Ugt metagenome suggests that the trap microbiome plays an important role in nutrient scavenging and assimilation while complementing the hydrolytic functions of the plant.
Collapse
Affiliation(s)
- Luis David Alcaraz
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70–275, 04510, Ciudad Universitaria, Ciudad de México, México
| | - Shamayim Martínez-Sánchez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70–275, 04510, Ciudad Universitaria, Ciudad de México, México
| | - Ignacio Torres
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, 58190, Morelia, Michoacán, México
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C, 91070, Carretera antigua a Coatepec 351, El Haya Xalapa, Veracruz, México
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Carretera Irapuato-León, 36821, Irapuato, Guanajuato, México
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Carretera Irapuato-León, 36821, Irapuato, Guanajuato, México
| |
Collapse
|