1
|
Khusna RY, Geraldi A, Wibowo AT, Fatimah U, Clement C, Manuhara YSW, Santoso H, Fauzia FN, Putro YK, Arsad RN, Setiawan R, Luqman A, Hariyanto S. Isolation and identification of plant growth-promoting rhizobacteria from Spinifex littoreus in Parangkusumo Coastal Sand Dunes, Indonesia. BRAZ J BIOL 2024; 84:e284907. [PMID: 39383412 DOI: 10.1590/1519-6984.284907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/17/2024] [Indexed: 10/11/2024] Open
Abstract
Utilizing coastal land for agriculture presents challenges such as low water content, high soil salinity, and low organic compound content. To support plant growth under these conditions, biofertilizers composed of plant growth promoting Rhizobacteria (PGPR), especially those inhabiting coastal areas, are needed. The Parangkusumo sand dunes on the southern coast of Java, Indonesia, is a unique coastal ecosystem characterized by arid conditions, high temperatures, and high soil salinity. To date, no studies have reported the isolation of PGPR from this ecosystem. This study is the first to isolate and identify PGPR associated with Spinifex littoreus, a dominant plant species in the Parangkusumo sand dunes, which are adapted to the harsh condition of Parangkusumo sand dunes. Ten rhizobacterial isolates were obtained, with five identified as members of the Bacillaceae family. All isolates demonstrated phosphate solubilization activity, while seven exhibited cellulolytic activity. One isolate, Priestia aryabhattai strain 2, notably showed phosphate solubilization and nitrogen fixation activities. The findings of this PGPR activity screening offer valuable insights for developing biofertilizers tailored for coastal agricultural applications.
Collapse
Affiliation(s)
- R Y Khusna
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| | - A Geraldi
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
- Universitas Airlangga, Biotechnology of Tropical Medicinal Plants Research Group, Surabaya, Indonesia
- Universitas Airlangga, University CoE-Research Center for Bio-Molecule Engineering, Surabaya, Indonesia
- Universitas Airlangga, Institute of Life Science, Technology and Engineering - LIHTR, Surabaya, Indonesia
| | - A T Wibowo
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
- Universitas Airlangga, Biotechnology of Tropical Medicinal Plants Research Group, Surabaya, Indonesia
| | - Undefined Fatimah
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
- Universitas Airlangga, University CoE-Research Center for Bio-Molecule Engineering, Surabaya, Indonesia
| | - C Clement
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| | - Y S W Manuhara
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
- Universitas Airlangga, Biotechnology of Tropical Medicinal Plants Research Group, Surabaya, Indonesia
| | - H Santoso
- Generasi Biologi Indonesia (Genbinesia) Foundation, Gresik, Indonesia
| | - F N Fauzia
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| | - Y K Putro
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| | - R N Arsad
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| | - R Setiawan
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| | - A Luqman
- Institute Teknologi Sepuluh Nopember, Department of Biology, Surabaya, Indonesia
- Julius Maximilians University of Wuerzburg, Institute for Molecular Infection Biology - IMIB, Wuerzburg, Germany
| | - S Hariyanto
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| |
Collapse
|
2
|
Mun BG, Hussain A, Park YG, Kang SM, Lee IJ, Yun BW. The PGPR Bacillus aryabhattai promotes soybean growth via nutrient and chlorophyll maintenance and the production of butanoic acid. FRONTIERS IN PLANT SCIENCE 2024; 15:1341993. [PMID: 38439982 PMCID: PMC10909845 DOI: 10.3389/fpls.2024.1341993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots, establish a mutualistic relationship with the plants and help them grow better. This study reports novel findings on the plant growth-promoting effects of the PGPR Bacillus aryabhattai. Soil was collected from a soybean field, PGPR were isolated, identified, and characterized for their ability to promote plant growth and development. The bacterium was isolated from the soybean rhizosphere and identified as B. aryabhattai strain SRB02 via 16s rRNA sequencing. As shown by SEM, the bacterium successfully colonized rice and soybean roots within 2 days and significantly promoted the growth of the GA-deficient rice cultivar Waito-C within 10 days, as well as the growth of soybean plants with at least six times longer shoots, roots, higher chlorophyll content, fresh, and dry weight after 10 days of inoculation. ICP analysis showed up to a 100% increase in the quantity of 18 different amino acids in the SRB02-treated soybean plants. Furthermore, the 2-DE gel assay indicated the presence of several differentially expressed proteins in soybean leaves after 24 hrs of SRB02 application. MALDI-TOF-MS identified β-conglycinin and glycinin along with several other proteins that were traced back to their respective genes. Analysis of bacterial culture filtrates via GCMS recorded significantly higher quantities of butanoic acid which was approximately 42% of all the metabolites found in the filtrates. The application of 100 ppm butanoic acid had significantly positive effects on plant growth via chlorophyll maintenance. These results establish the suitability of B. aryabhattai as a promising PGPR for field application in various crops.
Collapse
Affiliation(s)
- Bong-Gyu Mun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Adil Hussain
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Agriculture, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yeon-Gyeong Park
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Merlin TS, Umar M, Puthiyedathu ST. Genomic insights into symbiosis and host adaptation of an ascidian-associated bacterium Bacillus aryabhattai MCCB 387. Symbiosis 2022. [DOI: 10.1007/s13199-022-00860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Picon A, Del Olmo A, Nuñez M. Bacterial diversity in six species of fresh edible seaweeds submitted to high pressure processing and long-term refrigerated storage. Food Microbiol 2020; 94:103646. [PMID: 33279071 DOI: 10.1016/j.fm.2020.103646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Seaweeds are highly perishable foods due to their richness in nutrients. High pressure processing (HPP) has been applied for extending the shelf life of fresh seaweeds but there is no information on the effect of HPP on the bacterial diversity of seaweeds. The culturable bacteria of six species of fresh edible seaweeds (green seaweeds Codium fragile and Ulva lactuca, brown seaweeds Himanthalia elongata, Laminaria ochroleuca and Undaria pinnatifida, and red seaweed Chondrus crispus) were investigated and compared to those of HPP-treated (400 and 600 MPa for 5 min) seaweeds, at the start and end of their refrigerated storage period. A total of 523 and 506 bacterial isolates were respectively retrieved from untreated and HPP-treated seaweeds. Isolates from untreated seaweeds belonged to 18 orders, 35 families, 71 genera and 135 species whereas isolates from HPP-treated seaweeds belonged to 13 orders, 23 families, 43 genera and 103 species. HPP treatment significantly reduced the number of isolates belonging to 6 families and greatly increased the number of Bacillaceae isolates. At the end of storage, decreases in bacterial diversity at the genus and species level were observed for untreated as well as for HPP-treated seaweeds.
Collapse
Affiliation(s)
- Antonia Picon
- INIA, Departamento de Tecnología de Alimentos, Carretera de La Coruña Km 7, 28040, Madrid, Spain.
| | - Ana Del Olmo
- INIA, Departamento de Tecnología de Alimentos, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Manuel Nuñez
- INIA, Departamento de Tecnología de Alimentos, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| |
Collapse
|
5
|
Zhao Y, Chen C, Gu HJ, Zhang J, Sun L. Characterization of the Genome Feature and Toxic Capacity of a Bacillus wiedmannii Isolate From the Hydrothermal Field in Okinawa Trough. Front Cell Infect Microbiol 2019; 9:370. [PMID: 31750261 PMCID: PMC6842932 DOI: 10.3389/fcimb.2019.00370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
The Bacillus cereus group is frequently isolated from soil, plants, food, and other environments. In this study, we report the first isolation and characterization of a B. cereus group member, Bacillus wiedmannii SR52, from the hydrothermal field in the Iheya Ridge of Okinawa Trough. SR52 was isolated from the gills of shrimp Alvinocaris longirostris, an invertebrate species found abundantly in the ecosystems of the hydrothermal vents, and is most closely related to B. wiedmannii FSL W8-0169. SR52 is aerobic, motile, and able to form endospores. SR52 can grow in NaCl concentrations up to 9%. SR52 has a circular chromosome of 5,448,361 bp and a plasmid of 137,592 bp, encoding 5,709 and 189 genes, respectively. The chromosome contains 297 putative virulence genes, including those encoding enterotoxins and hemolysins. Fourteen rRNA operons, 107 tRNAs, and 5 sRNAs are present in the chromosome, and 7 tRNAs are present in the plasmid. SR52 possesses 13 genomic islands (GIs), all on the chromosome. Comparing to FSL W8-0169, SR52 exhibits several streaking features in its genome, notably an exceedingly large number of non-coding RNAs and GIs. In vivo studies showed that following intramuscular injection into fish, SR52 was able to disseminate in tissues and cause mortality; when inoculated into mice, SR52 induced acute mortality and disseminated transiently in tissues. In vitro studies showed that SR52 possessed hemolytic activity, and the extracellular product of SR52 exhibited a strong cytotoxic effect. These results provided the first insight into the cytotoxicity and genomic feature of B. wiedmannii from the deep-sea hydrothermal environment.
Collapse
Affiliation(s)
- Yan Zhao
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Chen
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Han-Jie Gu
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
6
|
Gu HJ, Sun QL, Luo JC, Zhang J, Sun L. A First Study of the Virulence Potential of a Bacillus subtilis Isolate From Deep-Sea Hydrothermal Vent. Front Cell Infect Microbiol 2019; 9:183. [PMID: 31214515 PMCID: PMC6554283 DOI: 10.3389/fcimb.2019.00183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/13/2019] [Indexed: 02/05/2023] Open
Abstract
Bacillus subtilis is the best studied Gram-positive bacterium, primarily as a model of cell differentiation and industrial exploitation. To date, little is known about the virulence of B. subtilis. In this study, we examined the virulence potential of a B. subtilis strain (G7) isolated from the Iheya North hydrothermal field of Okinawa Trough. G7 is aerobic, motile, endospore-forming, and requires NaCl for growth. The genome of G7 is composed of one circular chromosome of 4,216,133 base pairs with an average GC content of 43.72%. G7 contains 4,416 coding genes, 27.5% of which could not be annotated, and the remaining 72.5% were annotated with known or predicted functions in 25 different COG categories. Ten sets of 23S, 5S, and 16S ribosomal RNA operons, 86 tRNA and 14 sRNA genes, 50 tandem repeats, 41 mini-satellites, one microsatellite, and 42 transposons were identified in G7. Comparing to the genome of the B. subtilis wild type strain NCIB 3610T, G7 genome contains many genomic translocations, inversions, and insertions, and twice the amount of genomic Islands (GIs), with 42.5% of GI genes encoding hypothetical proteins. G7 possesses abundant putative virulence genes associated with adhesion, invasion, dissemination, anti-phagocytosis, and intracellular survival. Experimental studies showed that G7 was able to cause mortality in fish and mice following intramuscular/intraperitoneal injection, resist the killing effect of serum complement, and replicate in mouse macrophages and fish peripheral blood leukocytes. Taken together, our study indicates that G7 is a B. subtilis isolate with unique genetic features and can be lethal to vertebrate animals once being introduced into the animals by artificial means. These results provide the first insight into the potential harmfulness of deep-sea B. subtilis.
Collapse
Affiliation(s)
- Han-Jie Gu
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Lei Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing-Chang Luo
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Amelia TSM, Amirul AAA, Saidin J, Bhubalan K. Identification of Cultivable Bacteria from Tropical Marine Sponges and Their Biotechnological Potentials. Trop Life Sci Res 2018; 29:187-199. [PMID: 30112149 PMCID: PMC6072720 DOI: 10.21315/tlsr2018.29.2.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Marine sponges are acknowledged as bacterial hotspots in the oceanic biome. Aquatic bacteria are being investigated comprehensively for bioactive complexes and secondary metabolites. Cultivable bacteria associated with different species of sea sponges in South China Sea waters adjacent to Bidong Island, Terengganu were identified. Molecular identification was accomplished using 16S rRNA gene cloning and sequencing. Fourteen bacterial species were identified and their phylogenetic relationships were analysed by constructing a neighbour-joining tree with Molecular Evolutionary Genetics Analysis 6. The identified species encompassed four bacterial classes that were Firmicutes, Actinobacteria, Alphaproteobacteria and Gammaproteobacteria known to have been associated with sponges. The potential biotechnological applications of the identified bacteria were compared and reviewed based on relevant past studies. The biotechnological functions of the 14 cultivable isolates have been previously reported, hence reinforcing that bacteria associated with sponges are an abundant resource of scientifically essential compounds. Resilience of psychrotolerant bacteria, Psychrobacter celer, in warm tropical waters holds notable prospects for future research.
Collapse
Affiliation(s)
- Tan Suet May Amelia
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation, 11700 Gelugor, Pulau Pinang, Malaysia
- Centre of Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| | - Jasnizat Saidin
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Kesaven Bhubalan
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation, 11700 Gelugor, Pulau Pinang, Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
8
|
Bhattacharyya C, Bakshi U, Mallick I, Mukherji S, Bera B, Ghosh A. Genome-Guided Insights into the Plant Growth Promotion Capabilities of the Physiologically Versatile Bacillus aryabhattai Strain AB211. Front Microbiol 2017; 8:411. [PMID: 28377746 PMCID: PMC5359284 DOI: 10.3389/fmicb.2017.00411] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/27/2017] [Indexed: 11/24/2022] Open
Abstract
Bacillus aryabhattai AB211 is a plant growth promoting, Gram-positive firmicute, isolated from the rhizosphere of tea (Camellia sinensis), one of the oldest perennial crops and a major non-alcoholic beverage widely consumed all over the world. The whole genome of B. aryabhattai AB211 was sequenced, annotated and evaluated with special focus on genomic elements related to plant microbe interaction. It’s genome sequence reveals the presence of a 5,403,026 bp chromosome. A total of 5226 putative protein-coding sequences, 16 rRNA, 120 tRNA, 8 ncRNAs, 58 non-protein coding genes, and 11 prophage regions were identified. Genome sequence comparisons between strain AB211 and other related environmental strains of B. aryabhattai, identified about 3558 genes conserved among all B. aryabhattai genomes analyzed. Most of the common genes involved in plant growth promotion activities were found to be present within core genes of all the genomes used for comparison, illustrating possible common plant growth promoting traits shared among all the strains of B. aryabhattai. Besides the core genes, some genes were exclusively identified in the genome of strain AB211. Functional annotation of the genes predicted in the strain AB211 revealed the presence of genes responsible for mineral phosphate solubilization, siderophores, acetoin, butanediol, exopolysaccharides, flagella biosynthesis, surface attachment/biofilm formation, and indole acetic acid production, most of which were experimentally verified in the present study. Genome analysis and experimental evidence suggested that AB211 has robust central carbohydrate metabolism implying that this bacterium can efficiently utilize the root exudates and other organic materials as an energy source. Genes for the production of peroxidases, catalases, and superoxide dismutases, that confer resistance to oxidative stresses in plants were identified in AB211 genome. Besides these, genes for heat shock tolerance, cold shock tolerance, glycine-betaine production, and antibiotic/heavy metal resistance that enable bacteria to survive biotic/abiotic stress were also identified. Based on the genome sequence information and experimental evidence as presented in this study, strain AB211 appears to be metabolically diverse and exhibits tremendous potential as a plant growth promoting bacterium.
Collapse
Affiliation(s)
| | - Utpal Bakshi
- Structural Biology and Bioinformatics Division, CSIR - Indian Institute of Chemical BiologyKolkata, India; Tea Board of India, Ministry of Commerce and IndustryKolkata, India
| | - Ivy Mallick
- Department of Biochemistry, Bose Institute Kolkata, India
| | | | - Biswajit Bera
- Tea Board of India, Ministry of Commerce and Industry Kolkata, India
| | | |
Collapse
|
9
|
Oksińska MP, Magnucka EG, Lejcuś K, Pietr SJ. Biodegradation of the cross-linked copolymer of acrylamide and potassium acrylate by soil bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5969-5977. [PMID: 26817471 DOI: 10.1007/s11356-016-6130-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
Chemical cross-linking and the high molecular weight of superabsorbent copolymers (SAPs) are the two main causes of their resistance to biodegradation. However, SAP particles are colonized by microorganisms. For the purposes of this study, the dry technical copolymer of acrylamide and potassium acrylate containing 5.28 % of unpolymerized monomers was wrapped in a geotextile and incubated in unsterile Haplic Luvisol soil as a water absorbing geocomposite. The highest number of soil bacteria that colonized the hydrated SAP and utilized it as the sole carbon and energy source was found after the first month of incubation in soil. It was equal to 7.21-7.49 log10 cfu g(-1) of water absorbed by the SAP and decreased by 1.35-1.61 log10 units within the next 8 months. During this time, the initial SAP water holding capacity of 1665.8 g has decreased by 24.40 %. Moreover, the 5 g of SAP dry mass has declined by 31.70 %. Two bacteria, Rhizobium radiobacter 28SG and Bacillus aryabhattai 31SG isolated from the watered SAP were found to be able to biodegrade this SAP in pure cultures. They destroyed 25.07 and 41.85 mg of 300 mg of the technical SAP during the 60-day growth in mineral Burk's salt medium, and biodegradation activity was equal to 2.95 and 6.72 μg of SAP μg(-1) of protein, respectively. B. aryabhattai 31SG and R. radiobacter 28SG were also able to degrade 9.99 and 29.70 mg of 82 mg of the ultra-pure SAP in synthetic root exudate medium during the 30-day growth, respectively.
Collapse
Affiliation(s)
- Małgorzata P Oksińska
- Laboratory of Agricultural Microbiology, Department of Plant Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzka 53, 50-357, Wrocław, Poland.
| | - Elżbieta G Magnucka
- Laboratory of Agricultural Microbiology, Department of Plant Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzka 53, 50-357, Wrocław, Poland
| | - Krzysztof Lejcuś
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Grunwaldzki Sq 24, 50-363, Wrocław, Poland
| | - Stanisław J Pietr
- Laboratory of Agricultural Microbiology, Department of Plant Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzka 53, 50-357, Wrocław, Poland
| |
Collapse
|