1
|
Wahltinez SJ, Byrne M, Stacy NI. Coelomic fluid of asteroid echinoderms: Current knowledge and future perspectives on its utility for disease and mortality investigations. Vet Pathol 2023; 60:547-559. [PMID: 37264636 DOI: 10.1177/03009858231176563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Coelomic fluid surrounds the internal organs of asteroid echinoderms (asteroids, otherwise known as sea stars or starfish) and plays an essential role in the immune system, as well as in the transport of respiratory gases, nutrients, waste products, and reproductive mediators. Due to its importance in physiology and accessibility for nonlethal diagnostic sampling, coelomic fluid of asteroids provides an excellent sample matrix for health evaluations and can be particularly useful in disease and mortality investigations. This is especially important in light of recent increases in the number of affected individuals and species, larger geographic scope, and increased observed frequency of sea star wasting events compared with historic accounts of wasting. This review summarizes the current knowledge about coelomocytes, the effector cell of the asteroid immune system; coelomic fluid electrolytes, osmolality, acid-base status and respiratory gases, and microbiota; and genomic, transcriptomic, and proteomic investigations of coelomic fluid. The utility of coelomic fluid analysis for assessing stressor responses, diseases, and mortality investigations is considered with knowledge gaps and future directions identified. This complex body fluid provides an exciting opportunity to increase our understanding of this unique and ecologically important group of animals.
Collapse
Affiliation(s)
| | - Maria Byrne
- The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
2
|
Guatelli S, Ferrario C, Bonasoro F, Anjo SI, Manadas B, Candia Carnevali MD, Varela Coelho A, Sugni M. More than a simple epithelial layer: multifunctional role of echinoderm coelomic epithelium. Cell Tissue Res 2022; 390:207-227. [PMID: 36083358 PMCID: PMC9630195 DOI: 10.1007/s00441-022-03678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 08/23/2022] [Indexed: 11/02/2022]
Abstract
In echinoderms, the coelomic epithelium (CE) is reportedly the source of new circulating cells (coelomocytes) as well as the provider of molecular factors such as immunity-related molecules. However, its overall functions have been scarcely studied in detail. In this work, we used an integrated approach based on both microscopy (light and electron) and proteomic analyses to investigate the arm CE in the starfish Marthasterias glacialis during different physiological conditions (i.e., non-regenerating and/or regenerating). Our results show that CE cells share both ultrastructural and proteomic features with circulating coelomocytes (echinoderm immune cells). Additionally, microscopy and proteomic analyses indicate that CE cells are actively involved in protein synthesis and processing, and membrane trafficking processes such as phagocytosis (particularly of myocytes) and massive secretion phenomena. The latter might provide molecules (e.g., immune factors) and fluids for proper arm growth/regrowth. No stem cell marker was identified and no pre-existing stem cell was observed within the CE. Rather, during regeneration, CE cells undergo dedifferentiation and epithelial-mesenchymal transition to deliver progenitor cells for tissue replacement. Overall, our work underlines that echinoderm CE is not a "simple epithelial lining" and that instead it plays multiple functions which span from immunity-related roles as well as being a source of regeneration-competent cells for arm growth/regrowth.
Collapse
Affiliation(s)
- Silvia Guatelli
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milan, Italy
- Center for Complexity & Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133, Milan, Italy
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | | | - Ana Varela Coelho
- ITQB-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milan, Italy.
- Center for Complexity & Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
3
|
Ferrario C, Ben Khadra Y, Sugni M, Candia Carnevali MD, Martinez P, Bonasoro F. Studying Echinodermata Arm Explant Regeneration Using Echinaster sepositus. Methods Mol Biol 2022; 2450:263-291. [PMID: 35359313 PMCID: PMC9761906 DOI: 10.1007/978-1-0716-2172-1_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Echinoderms are marine invertebrate deuterostomes known for their amazing regenerative abilities throughout all life stages. Though some species can undergo whole-body regeneration (WBR), others exhibit more restricted regenerative capabilities. Asteroidea (starfish) comprise one of the few echinoderm taxa capable of undergoing WBR. Indeed, some starfish species can restore all tissues and organs not only during larval stages, but also from arm fragments as adults. Arm explants have been used to study cells, tissues and genes involved in starfish regeneration. Here, we describe methods for obtaining and studying regeneration of arm explants in starfish, in particular animal collection and husbandry, preparation of arm explants, regeneration tests, microscopic anatomy techniques (including transmission electron microscopy, TEM) used to analyze the regenerating explant tissues and cells plus a downstream RNA extraction protocol needed for subsequent molecular investigations.
Collapse
Affiliation(s)
- Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Department of Physics, Center for Complexity and Biosystem, University of Milan, Milan, Italy
| | - Yousra Ben Khadra
- Laboratory of Genetics, Biodiversity, and Valorization of Bioresources, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy.
- Department of Physics, Center for Complexity and Biosystem, University of Milan, Milan, Italy.
- GAIA 2050, Department of Environmental Science and Policy, University of Milan, Milan, Italy.
| | - M Daniela Candia Carnevali
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- GAIA 2050, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Pedro Martinez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- GAIA 2050, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Byrne M, Mazzone F, Elphick MR, Thorndyke MC, Cisternas P. Expression of the neuropeptide SALMFamide-1 during regeneration of the seastar radial nerve cord following arm autotomy. Proc Biol Sci 2020; 286:20182701. [PMID: 31014214 DOI: 10.1098/rspb.2018.2701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Arm loss through a separation at a specialized autotomy plane in echinoderms is inextricably linked to regeneration, but the link between these phenomena is poorly explored. We investigated nervous system regeneration post-autotomy in the asteriid seastar Coscinasterias muricata, focusing on the reorganization of the radial nerve cord (RNC) into the ectoneural neuroepithelium and neuropile, and the hyponeural region, using antibodies to the seastar-specific neuropeptide SALMFamide-1 (S1). Parallel changes in the associated haemal and coelomic vessels were also examined. A new arm bud appeared in 3-5 days with regeneration over three weeks. At the nerve stump and in the RNC immediately behind, the haemal sinus/hyponeural coelomic compartments enlarged into a hypertrophied space filled with migratory cells that appear to be involved in wound healing and regeneration. The haemal and coelomic compartments provided a conduit for these cells to gain rapid access to the regeneration site. An increase in the number of glia-like cells indicates the importance of these cells in regeneration. Proximal to the autotomy plane, the original RNC exhibited Wallerian-type degeneration, as seen in disorganized axons and enlarged S1-positive varicosities. The imperative to regrow lost arms quickly is reflected in the efficiency of regeneration from the autotomy plane facilitated by the rapid appearance of progenitor-like migratory cells. In parallel to its specialization for defensive arm detachment, the autotomy plane appears to be adapted to promote regeneration. This highlights the importance of examining autotomy-induced regeneration in seastars as a model system to study nervous system regeneration in deuterostomes and the mechanisms involved with the massive migration of stem-like cells to facilitate rapid recovery.
Collapse
Affiliation(s)
- Maria Byrne
- 1 School of Medical Science, University of Sydney , Sydney, New South Wales 2006 , Australia.,2 School of Life and Environmental Sciences, University of Sydney , Sydney, New South Wales 2006 , Australia
| | - Franca Mazzone
- 1 School of Medical Science, University of Sydney , Sydney, New South Wales 2006 , Australia
| | - Maurice R Elphick
- 3 School of Biological and Chemical Sciences, Queen Mary University of London , London E1 4NS , UK
| | - Michael C Thorndyke
- 4 Department of Biological and Environmental Sciences-Kristineberg, University of Gothenburg , Kristineberg 566, SE-45178 Fiskebäckskil , Sweden
| | - Paula Cisternas
- 1 School of Medical Science, University of Sydney , Sydney, New South Wales 2006 , Australia
| |
Collapse
|
5
|
Byrne M. The Link between Autotomy and CNS Regeneration: Echinoderms as Non‐Model Species for Regenerative Biology. Bioessays 2020; 42:e1900219. [DOI: 10.1002/bies.201900219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Maria Byrne
- School of Medical Sciences and School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
| |
Collapse
|
6
|
Ben Khadra Y, Sugni M, Ferrario C, Bonasoro F, Oliveri P, Martinez P, Candia Carnevali MD. Regeneration in Stellate Echinoderms: Crinoidea, Asteroidea and Ophiuroidea. Results Probl Cell Differ 2018; 65:285-320. [PMID: 30083925 DOI: 10.1007/978-3-319-92486-1_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reparative regeneration is defined as the replacement of lost adult body parts and is a phenomenon widespread yet highly variable among animals. This raises the question of which key cellular and molecular mechanisms have to be implemented in order to efficiently and correctly replace entire body parts in any animal. To address this question, different studies using an integrated cellular and functional genomic approach to study regeneration in stellate echinoderms (crinoids, asteroids and ophiuroids) had been carried out over the last few years. The phylum Echinodermata is recognized for the striking regeneration potential shown by the members of its different clades. Indeed, stellate echinoderms are considered among the most useful and tractable experimental models for carrying comprehensive studies focused on ecological, developmental and evolutionary aspects. Moreover, most of them are tractable in the laboratory and, thus, should allow us to understand the underlying mechanisms, cellular and molecular, which are involved. Here, a comprehensive analysis of the cellular/histological components of the regenerative process in crinoids, asteroids and ophiuroids is described and compared. However, though this knowledge provided us with some clear insights into the global distribution of cell types at different times, it did not explain us how the recruited cells are specified (and from which precursors) over time and where are they located in the animal. The precise answer to these queries needs the incorporation of molecular approaches, both descriptive and functional. Yet, the molecular studies in stellate echinoderms are still limited to characterization of some gene families and protein factors involved in arm regeneration but, at present, have not shed light on most of the basic mechanisms. In this context, further studies are needed specifically to understand the role of regulatory factors and their spatio-temporal deployment in the growing arms. A focus on developing functional tools over the next few years should be of fundamental importance.
Collapse
Affiliation(s)
- Yousra Ben Khadra
- Laboratoire de Recherche, Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia.
| | - Michela Sugni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy.
- Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy.
| | - Cinzia Ferrario
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy
| | - Francesco Bonasoro
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Pedro Martinez
- Departament de Genètica, Microbiologia I Estadística, Universitat de Barcelona, Barcelona, Spain
- ICREA (Institut Català de Recerca i Estudis Avancats), Barcelona, Spain
| | | |
Collapse
|
7
|
Kim CH, Go HJ, Oh HY, Jo YH, Elphick MR, Park NG. Transcriptomics reveals tissue/organ-specific differences in gene expression in the starfish Patiria pectinifera. Mar Genomics 2017; 37:92-96. [PMID: 28899644 DOI: 10.1016/j.margen.2017.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 11/28/2022]
Abstract
Starfish (Phylum Echinodermata) are of interest from an evolutionary perspective because as deuterostomian invertebrates they occupy an "intermediate" phylogenetic position with respect to chordates (e.g. vertebrates) and protostomian invertebrates (e.g. Drosophila). Furthermore, starfish are model organisms for research on fertilization, embryonic development, innate immunity and tissue regeneration. However, large-scale molecular data for starfish tissues/organs are limited. To provide a comprehensive genetic resource for the starfish Patiria pectinifera, we report de novo transcriptome assemblies and global gene expression analysis for six P. pectinifera tissues/organs - body wall (BW), coelomic epithelium (CE), tube feet (TF), stomach (SM), pyloric caeca (PC) and gonad (GN). A total of 408 million high-quality reads obtained from six cDNA libraries were assembled de novo using Trinity, resulting in a total of 549,598 contigs with a mean length of 835 nucleotides (nt), an N50 of 1473nt, and GC ratio of 42.5%. A total of 126,136 contigs (22.9%) were obtained as predicted open reading frames (ORFs) by TransDecoder, of which 102,187 were annotated with NCBI non-redundant (NR) hits, and 51,075 and 10,963 were annotated with Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) using the Blast2GO program, respectively. Gene expression analysis revealed that tissues/organs are grouped into three clusters: BW/CE/TF, SM/PC, and GN, which likely reflect functional relationships. 2408, 8560, 2687, 1727, 3321, and 2667 specifically expressed genes were identified for BW, GN, PC, CE, SM and TF, respectively, using the ROKU method. This study provides a valuable transcriptome resource and novel molecular insights into the functional biology of different tissues/organs in starfish as a model organism.
Collapse
Affiliation(s)
- Chan-Hee Kim
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Hye-Jin Go
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Hye Young Oh
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Yong Hun Jo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Nam Gyu Park
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
8
|
An integrated view of asteroid regeneration: tissues, cells and molecules. Cell Tissue Res 2017; 370:13-28. [DOI: 10.1007/s00441-017-2589-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/08/2017] [Indexed: 01/11/2023]
|