1
|
Genome-Wide SNP Analysis Reveals the Genetic Diversity and Population Structure of the Domestic Reindeer Population (Rangifer tarandus) Inhabiting the Indigenous Tofalar Lands of Southern Siberia. DIVERSITY 2022. [DOI: 10.3390/d14110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Operating under the assumption that decline in population size increases the threat of loss of genetic diversity, herein, our first aim was to monitor and document the genetic diversity and population structure of the endemic Tuva–Tofalar reindeer, the number of which has seen a dramatic decrease. Second, we were interested in understanding of Tuva reindeer genetic relationship with four officially recognized reindeer breeds, whose wild populations inhabit the Far North of Russia, as well as with the domestic reindeer making up the Mongolian population. Our results, based on the genome-wide SNP genotypes generated by the BovineHD BeadChip, revealed a low level of genetic variability of Tuva population in terms of the values of both allelic and genetic diversity. The ADMIXTURE analysis, the PCA plot, and the Neighbor Net network results, showed that Tuva population shared genetic background with reindeer inhabiting Mongolia, an implication of their common origin. Moreover, all statistic approaches used in our study showed a distinctive shared genetic structure revealed in independent clusters found in the composition of: an admixed cluster of Tuvan and Mongolian populations, a cluster of domestic reindeer breeds, and a cluster of the wild populations—all of which indirectly points to the possibility of the independent origins (with regard to the domestication) of the reindeer groups studied herein. We believe that our findings will contribute to the formation of a rational basis for solving problems related to the conservation of domestic Tuva-Tofalar reindeer in order to increase the number of this substantial reindeer population which will contribute to the sustainable functioning of ecosystems and the lives and culture of indigenous peoples inhabiting the southern sections of Eastern Siberia.
Collapse
|
2
|
Schmidt TL, Jasper M, Weeks AR, Hoffmann AA. Unbiased population heterozygosity estimates from genome‐wide sequence data. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Thomas L. Schmidt
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
| | - Moshe‐Elijah Jasper
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
| | - Andrew R Weeks
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
- cesar Pty Ltd Parkville VIC Australia
| | - Ary A Hoffmann
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
| |
Collapse
|
3
|
Medina A, Abascal FJ, Varela JL. Common dolphinfish, Coryphaena hippurus, spawn at their easternmost Atlantic range adjacent to the Mediterranean Sea. JOURNAL OF FISH BIOLOGY 2020; 97:409-415. [PMID: 32402108 DOI: 10.1111/jfb.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
This study provides sound evidence of the spawning activity of common dolphinfish (Coryphaena hippurus) in the Gulf of Cadiz (southwest Spain) during summer months. Along with waters off Côte d'Ivoire, this area adjacent to the Mediterranean Sea is the easternmost Atlantic spawning ground documented for the species. All the fish analysed (5 males and 15 females) were at spawning stage, except the smallest female (61.5 cm in fork length), which might not have yet reached sexual maturation. The oceanographic conditions during the samplings were similar to those occurring during the peak spawning season in the Gulf of Mexico. The study results are consistent with recent genetic studies indicating differentiation between Mediterranean and Atlantic dolphinfish populations, with the Strait of Gibraltar representing a boundary between two distinct reproductive units. The present results may contribute to improve the understanding of the dynamics of dolphinfish population and the management of eastern Atlantic and Mediterranean stocks.
Collapse
Affiliation(s)
- Antonio Medina
- Departmento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Francisco J Abascal
- Instituto Español de Oceanografía, Santa Cruz de Tenerife, Canary Islands, Spain
| | - José L Varela
- Departmento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
4
|
Graham CF, Boreham DR, Manzon RG, Stott W, Wilson JY, Somers CM. How "simple" methodological decisions affect interpretation of population structure based on reduced representation library DNA sequencing: A case study using the lake whitefish. PLoS One 2020; 15:e0226608. [PMID: 31978053 PMCID: PMC6980518 DOI: 10.1371/journal.pone.0226608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 12/01/2019] [Indexed: 12/30/2022] Open
Abstract
Reduced representation (RRL) sequencing approaches (e.g., RADSeq, genotyping by sequencing) require decisions about how much to invest in genome coverage and sequencing depth, as well as choices of values for adjustable bioinformatics parameters. To empirically explore the importance of these “simple” methodological decisions, we generated two independent sequencing libraries for the same 142 individual lake whitefish (Coregonus clupeaformis) using a nextRAD RRL approach: (1) a larger number of loci at low sequencing depth based on a 9mer (library A); and (2) fewer loci at higher sequencing depth based on a 10mer (library B). The fish were selected from populations with different levels of expected genetic subdivision. Each library was analyzed using the STACKS pipeline followed by three types of population structure assessment (FST, DAPC and ADMIXTURE) with iterative increases in the stringency of sequencing depth and missing data requirements, as well as more specific a priori population maps. Library B was always able to resolve strong population differentiation in all three types of assessment regardless of the selected parameters, largely due to retention of more loci in analyses. In contrast, library A produced more variable results; increasing the minimum sequencing depth threshold (-m) resulted in a reduced number of retained loci, and therefore lost resolution at high -m values for FST and ADMIXTURE, but not DAPC. When detecting fine population differentiation, the population map influenced the number of loci and missing data, which generated artefacts in all downstream analyses tested. Similarly, when examining fine scale population subdivision, library B was robust to changing parameters but library A lost resolution depending on the parameter set. We used library B to examine actual subdivision in our study populations. All three types of analysis found complete subdivision among populations in Lake Huron, ON and Dore Lake, SK, Canada using 10,640 SNP loci. Weak population subdivision was detected in Lake Huron with fish from sites in the north-west, Search Bay, North Point and Hammond Bay, showing slight differentiation. Overall, we show that apparently simple decisions about library construction and bioinformatics parameters can have important impacts on the interpretation of population subdivision. Although potentially more costly on a per-locus basis, early investment in striking a balance between the number of loci and sequencing effort is well worth the reduced genomic coverage for population genetics studies. More conservative stringency settings on STACKS parameters lead to a final dataset that was more consistent and robust when examining both weak and strong population differentiation. Overall, we recommend that researchers approach “simple” methodological decisions with caution, especially when working on non-model species for the first time.
Collapse
Affiliation(s)
- Carly F. Graham
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Douglas R. Boreham
- Medical Sciences, Northern Ontario School of Medicine, Greater Sudbury, Ontario, Canada
| | - Richard G. Manzon
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Wendylee Stott
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Joanna Y. Wilson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
5
|
Anderson G, Hampton J, Smith N, Rico C. Indications of strong adaptive population genetic structure in albacore tuna ( Thunnus alalunga) in the southwest and central Pacific Ocean. Ecol Evol 2019; 9:10354-10364. [PMID: 31624554 PMCID: PMC6787800 DOI: 10.1002/ece3.5554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/18/2019] [Accepted: 07/22/2019] [Indexed: 01/09/2023] Open
Abstract
Albacore tuna (Thunnus alalunga) has a distinctly complex life history in which juveniles and adults separate geographically but at times inhabit the same spaces sequentially. The species also migrates long distances and presumably experiences varied regimes of physical stress over a lifetime. There are, therefore, many opportunities for population structure to arise based on stochastic differences or environmental factors that promote local adaptation. However, with the extent of mobility consistently demonstrated by tagged individuals, there is also a strong argument for panmixia within an ocean basin. It is important to confirm such assumptions from a population genetics standpoint for this species in particular because albacore is one of the principal market tuna species that sustains massive global fisheries and yet is also a slow-growing temperate tuna. Consequently, we used 1,837 neutral SNP loci and 89 loci under potential selection to analyze population genetic structure among five sample groups collected from the western and central South Pacific. We found no evidence to challenge panmixia at neutral loci, but strong indications of structuring at adaptive loci. One population sample, from French Polynesia in 2004, was particularly differentiated. Unfortunately, the current study cannot infer whether the divergence is geographic or temporal, or possibly caused by sample distribution. We encourage future studies to include potentially adaptive loci and to continue fine-scale observations within an ocean basin, and not to assume genome-wide panmixia.
Collapse
Affiliation(s)
- Giulia Anderson
- School of Marine StudiesMolecular Analytics Laboratory (MOANA‐LAB)Faculty of Science Technology and EnvironmentThe University of the South PacificSuvaFiji
| | - John Hampton
- Oceanic Fisheries Programme (OFP)Pacific CommunityNouméaNew Caledonia
| | - Neville Smith
- Oceanic Fisheries Programme (OFP)Pacific CommunityNouméaNew Caledonia
| | - Ciro Rico
- School of Marine StudiesMolecular Analytics Laboratory (MOANA‐LAB)Faculty of Science Technology and EnvironmentThe University of the South PacificSuvaFiji
- Instituto de Ciencias Marinas de Andalucía (ICMAN)Consejo Superior de Investigaciones CientíficasCádizSpain
| |
Collapse
|
6
|
Sun Y, Zhang Y, Zhang X. Synonymous SNPs of viral genes facilitate virus to escape host antiviral RNAi immunity. RNA Biol 2019; 16:1697-1710. [PMID: 31416386 DOI: 10.1080/15476286.2019.1656026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Synonymous single nucleotide polymorphisms (SNPs) are involved in codon usage preference or mRNA splicing. Up to date, however, the role of synonymous SNPs in immunity remains unclear. To address this issue, the SNPs of white spot syndrome virus (WSSV) were characterized in shrimp in the present study. Our results indicated that there existed synonymous SNPs in the mRNAs of wsv151 and wsv226, two viral genes of WSSV. In the presence of SNP siRNA, wild-type siRNA, wild-type mRNA and SNP mRNA of wsv151 or wsv226, RNAi was significantly suppressed, showing that the synonymous SNPs of wsv151 and wsv226 played negative roles in host siRNA pathway due to mismatch of siRNA with its target. In insect cells, the mismatch, caused by synonymous SNPs of wsv151 or wsv226, between siRNA and its target inhibited the host RNAi. Furthermore, the data revealed that the co-injection of SNP siRNA and wild-type siRNA of wsv151 or wsv226 into WSSV-infected shrimp led to a significant increase of WSSV copies compared with that of SNP siRNA alone or wild-type siRNA alone, indicating that the synonymous SNPs of viral genes could be a strategy of virus escaping host siRNA pathway in shrimp in vivo. Therefore, our study provided novel insights into the underlying mechanism of virus escaping host antiviral RNAi immunity by synonymous SNPs of viral genes.
Collapse
Affiliation(s)
- Yuechao Sun
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yu Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
7
|
Fang S, Zhang Y, Shi X, Zheng H, Li S, Zhang Y, Fazhan H, Waiho K, Tan H, Ikhwanuddin M, Ma H. Identification of male-specific SNP markers and development of PCR-based genetic sex identification technique in crucifix crab (Charybdis feriatus) with implication of an XX/XY sex determination system. Genomics 2019; 112:404-411. [PMID: 30851358 DOI: 10.1016/j.ygeno.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
Abstract
In this study, we first identified male-specific SNP markers using restriction site-associated DNA sequencing, and further developed a PCR-based sex identification technique for Charybdis feriatus. A total of 296.96 million clean reads were obtained, with 114.95 and 182.01 million from females and males. After assembly and alignment, 10 SNP markers were identified being heterozygous in males but homozygous in females. Five markers were further confirmed to be male-specific in a large number of individuals. Moreover, two male-specific sense primers and a common antisense primer were designed, using which, a PCR-based genetic sex identification method was successfully developed and used to identify the sex of 103 individuals, with a result of 49 females and 54 males. The presence of male-specific SNP markers suggests an XX/XY sex determination system for C. feriatus. These findings should be helpful for better understanding sex determination mechanism, and drafting artificial breeding program in crustaceans.
Collapse
Affiliation(s)
- Shaobin Fang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Xi Shi
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Hanafiah Fazhan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Khor Waiho
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Huaqiang Tan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Mhd Ikhwanuddin
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|