1
|
Fakhraldeen SA, Al-Haddad S, Habibi N, Alagarsamy S, F. K. Habeebullah S, Ali AK, Al-Zakri WM. Diversity and spatiotemporal variations in bacterial and archaeal communities within Kuwaiti territorial waters of the Northwest Arabian Gulf. PLoS One 2023; 18:e0291167. [PMID: 37972047 PMCID: PMC10653540 DOI: 10.1371/journal.pone.0291167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 11/19/2023] Open
Abstract
Kuwaiti territorial waters of the northwest Arabian Gulf represent a unique aquatic ecosystem prone to various environmental and anthropogenic stressors that pose significant constraints on the resident biota which must withstand extreme temperatures, salinity levels, and reducing conditions, among other factors to survive. Such conditions create the ideal environment for investigations into novel functional genetic adaptations of resident organisms. Firstly, however, it is essential to identify said organisms and understand the dynamic nature of their existence. Thus, this study provides the first comprehensive analysis of bacterial and archaeal community structures in the unique waters of Kuwait located in the Northwest Arabian Gulf and analyzes their variations with respect to depth, season, and location, as well as their susceptibility to changes in abundance with respect to various physicochemical parameters. Importantly, this study is the first of its kind to utilize a shotgun metagenomics approach with sequencing performed at an average depth of 15 million paired end reads per sample, which allows for species-level community profiling and sets the framework for future functional genomic investigations. Results showed an approximately even abundance of both archaeal (42.9%) and bacterial (57.1%) communities, but significantly greater diversity among the bacterial population, which predominantly consisted of members of the Proteobacteria, Cyanobacteria, and Bacteroidetes phyla in decreasing order of abundance. Little to no significant variations as assessed by various metrics including alpha and beta diversity analyses were observed in the abundance of archaeal and bacterial populations with respect to depth down the water column. Furthermore, although variations in differential abundance of key genera were detected at each of the three sampling locations, measurements of species richness and evenness revealed negligible variation (ANOVA p<0.05) and only a moderately defined community structure (ANOSIM r2 = 0.243; p>0.001) between the various locations. Interestingly, abundance of archaeal community members showed a significant increase (log2 median ratio of RA = 2.6) while the bacterial population showed a significant decrease (log2 median ratio = -1.29) in the winter season. These findings were supported by alpha and beta diversity analyses as well (ANOSIM r2 = 0.253; p>0.01). Overall, this study provides the first in-depth analysis of both bacterial and archaeal community structures developed using a shotgun metagenomic approach in the waters of the Northwest Arabian Gulf thus providing a framework for future investigations of functional genetic adaptations developed by resident biota attempting to survive in the uniquely extreme conditions to which they are exposed.
Collapse
Affiliation(s)
- Saja A. Fakhraldeen
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Sakinah Al-Haddad
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Nazima Habibi
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Surendraraj Alagarsamy
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Sabeena F. K. Habeebullah
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Abdulmuhsen K. Ali
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Walid M. Al-Zakri
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| |
Collapse
|
2
|
Abundance and community composition of bacterioplankton in the Northern South China Sea during winter: geographic position and water layer influences. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0023-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
He Y, Sen B, Zhou S, Xie N, Zhang Y, Zhang J, Wang G. Distinct Seasonal Patterns of Bacterioplankton Abundance and Dominance of Phyla α- Proteobacteria and Cyanobacteria in Qinhuangdao Coastal Waters Off the Bohai Sea. Front Microbiol 2017; 8:1579. [PMID: 28868051 PMCID: PMC5563310 DOI: 10.3389/fmicb.2017.01579] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/03/2017] [Indexed: 11/13/2022] Open
Abstract
Qinhuangdao coastal waters in northern China are heavily impacted by anthropogenic and natural activities, and we anticipate a direct influence of the impact on the bacterioplankton abundance and diversity inhabiting the adjacent coastal areas. To ascertain the anthropogenic influences, we first evaluated the seasonal abundance patterns and diversity of bacterioplankton in the coastal areas with varied levels of natural and anthropogenic activities and then analyzed the environmental factors which influenced the abundance patterns. Results indicated distinct patterns in bacterioplankton abundance across the warm and cold seasons in all stations. Total bacterial abundance in the stations ranged from 8.67 × 104 to 2.08 × 106 cells/mL and had significant (p < 0.01) positive correlation with total phosphorus (TP), which indicated TP as the key monitoring parameter for anthropogenic impact on nutrients cycling. Proteobacteria and Cyanobacteria were the most abundant phyla in the Qinhuangdao coastal waters. Redundancy analysis revealed significant (p < 0.01) influence of temperature, dissolved oxygen and chlorophyll a on the spatiotemporal abundance pattern of α-Proteobacteria and Cyanobacteria groups. Among the 19 identified bacterioplankton subgroups, α-Proteobacteria (phylum Proteobacteria) was the dominant one followed by Family II (phylum Cyanobacteria), representing 19.1-55.2% and 2.3-54.2% of total sequences, respectively. An inverse relationship (r = -0.82) was observed between the two dominant subgroups, α-Proteobacteria and Family II. A wide range of inverse Simpson index (10.2 to 105) revealed spatial heterogeneity of bacterioplankton diversity likely resulting from the varied anthropogenic and natural influences. Overall, our results suggested that seasonal variations impose substantial influence on shaping bacterioplankton abundance patterns. In addition, the predominance of only a few cosmopolitan species in the Qinhuangdao coastal wasters was probably an indication of their competitive advantage over other bacterioplankton groups in the degradation of anthropogenic inputs. The results provided an evidence of their ecological significance in coastal waters impacted by seasonal inputs of the natural and anthropogenic matter. In conclusion, the findings anticipate future development of effective indicators of coastal health monitoring and subsequent management strategies to control the anthropogenic inputs in the Qinhuangdao coastal waters.
Collapse
Affiliation(s)
- Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Shuangyan Zhou
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Ningdong Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Yongfeng Zhang
- Qinhuangdao Marine Environmental Monitoring Central Station, State Oceanic AdministrationQinhuangdao, China
| | - Jianle Zhang
- Qinhuangdao Marine Environmental Monitoring Central Station, State Oceanic AdministrationQinhuangdao, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China
| |
Collapse
|
4
|
Su JF, Cheng C, Huang T, Wei L. Performance of the dominant bacterial species and microbial community in autotrophic denitrification coupled with iron cycle in immobilized systems. MARINE POLLUTION BULLETIN 2017; 117:88-97. [PMID: 28159332 DOI: 10.1016/j.marpolbul.2017.01.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/06/2017] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
We used three stable reactors to investigate the rates of nitrate removal coupled with iron cycle and the subsequent influence of the reaction on bacterial communities. The iron-reducing bacterium Klebsiella sp. FC61 was immobilized on the reactor columns of the experimental groups B (only Klebsiella) and C (Klebsiella+magnetite). With the fluctuation of Fe2+ to Fe3+ (iron cycle), the average nitrate removal efficiency increased from 73.22% to 93.91% and 86.92% to 97.84% in groups B and C, respectively, as the influent nitrate concentration decreased from 40 to 10mg/L. However, the average rate of nitrate removal showed the opposite trend (from 2.08mg/L/h to 0.67mg/L/h and 2.41mg/L/h to 0.69mg/L/h in groups B and C, respectively) as the influent nitrate concentration decreased. Analysis of microbial distribution and community structures indicated that the population of Klebsiella sp. increased in groups B (from 18.21% to 41.21%) and C (from 25.43% to 46.80%) and contributed to the effective removal of nitrate in the reactors.
Collapse
Affiliation(s)
- Jun Feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Ce Cheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Pylro VS, Morais DK, Kalks KHM, Roesch LFW, Hirsch PR, Tótola MR, Yotoko K. Misguided phylogenetic comparisons using DGGE excised bands may contaminate public sequence databases. J Microbiol Methods 2016; 126:18-23. [PMID: 27109483 DOI: 10.1016/j.mimet.2016.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 11/30/2022]
Abstract
Controversy surrounding bacterial phylogenies has become one of the most important challenges for microbial ecology. Comparative analyses with nucleotide databases and phylogenetic reconstruction of the amplified 16S rRNA genes from DGGE (Denaturing Gradient Gel Electrophoresis) excised bands have been used by several researchers for the identification of organisms in complex samples. Here, we individually analyzed DGGE-excised 16S rRNA gene bands from 10 certified bacterial strains of different species, and demonstrated that this kind of approach can deliver erroneous outcomes to researchers, besides causing/emphasizing errors in public databases.
Collapse
Affiliation(s)
- Victor Satler Pylro
- Genomics and Computational Biology Group, René Rachou Research Centre - CPqRR, Av. Augusto de Lima, 1715, 30190-002 Belo Horizonte, Minas Gerais, Brazil.
| | - Daniel Kumazawa Morais
- Genomics and Computational Biology Group, René Rachou Research Centre - CPqRR, Av. Augusto de Lima, 1715, 30190-002 Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Penny R Hirsch
- AgroEcology Department, Rothamsted Research, Harpenden, Herts AL52JQ, United Kingdom
| | - Marcos Rogério Tótola
- Microbiology Department, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Karla Yotoko
- Biology Department, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
6
|
Devlin MJ, Le Quesne WJF, Lyons BP. The Marine Environment of Kuwait--Emerging issues in a rapidly changing environment. MARINE POLLUTION BULLETIN 2015; 100:593-596. [PMID: 26689490 DOI: 10.1016/j.marpolbul.2015.11.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Michelle J Devlin
- James Cook University, Catchment Reef Research Group, TropWater, Townsville, QLD 4811, Australia.
| | - Will J F Le Quesne
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
| | - Brett P Lyons
- Cefas, Weymouth Laboratory, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|