1
|
Zeb R, Yin X, Chen F, Wang KJ. Sex-specific divergent responses of marine medaka (Oryzias melastigma) towards long-term benzo[a]pyrene exposure revealed stronger resilience and recoverability in female fish. CHEMOSPHERE 2024; 364:143077. [PMID: 39134182 DOI: 10.1016/j.chemosphere.2024.143077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Benzo[a]pyrene (BaP), a representative five-membered polycyclic aromatic hydrocarbon, has been extensively studied as a pollutant for decades. Despite this, sex-specific responses to BaP exposure remain poorly understood. This study employed a life-cycle exposure approach to investigate the effects of prolonged BaP exposure on marine medaka (Oryzias melastigma), highlighting sex-specific responses. After a 90-day exposure period, significant variations in biometric measurements and oxidative stress markers were observed between male and female fish. BaP exposure resulted in weak detoxification defense in males, while females exhibited an opposite response. Transcriptomic analysis revealed 13 significantly enriched pathways in males and 11 in females, with varying numbers of differentially expressed genes between the sexes, highlighting distinct biological responses. Host resistance assay showed higher mortality rates among BaP-exposed males, and suppressed immune gene expressions and lysozyme activity, while females demonstrated enhanced immune genes and lysozyme activity post-challenge, indicating a more resilient defense response. Furthermore, after a one-month depuration period following BaP exposure, male medaka demonstrated slower recoverability compared to females. These findings underscore sex-specific effects of BaP exposure on fish, with females displaying stronger resilience. Understanding these distinctions are crucial for accurately assessing the impact of environmental pollutants on the aquatic population and ecosystem maintenance.
Collapse
Affiliation(s)
- Rabia Zeb
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
2
|
Pannetier P, Morin B, Cabon J, Danion M, Morin T, Clérandeau C, Le Floch S, Cachot J. Water-accommodated fractions of heavy and light oils impact DNA integrity, embryonic development, and immune system of Japanese medaka at early life stages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50916-50928. [PMID: 39106018 DOI: 10.1007/s11356-024-34604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants generally found in complex mixtures. PAHs are known to cause pleiotropic effects on living organisms, including developmental defects, mutagenicity, carcinogenicity and immunotoxicity, and endocrine disruptions. The main goal of this study is to evaluate the toxicity of water-accommodated fractions (WAFs) of oils in two life stages of the Japanese medaka, larvae and juveniles. The deleterious effects of an acute exposure of 48 h to two WAFs from Arabian light crude oil (LO) and refined oil from Erika (HO) were analyzed in both stages. Relevant endpoints, including ethoxy resorufin-O-deethylase (EROD) activity, DNA damage (Comet assay), photomotor response, and sensitivity to nervous necrosis virus (NNV) infection, were investigated. Larvae exposed to both oil WAFs displayed a significant induction of EROD activity, DNA damage, and developmental anomalies, but no behavioral changes. Deleterious effects were significantly increased following exposure to 1 and 10 μg/L of LO WAFs and 10 μg/L of HO WAFs. Larval infection to NNV induced fish mortality and sharply reduced reaction to light stimulation. Co-exposure to WAFs and NNV increased the mortality rate, suggesting an impact of WAFs on fish defense capacities. WAF toxicity on juveniles was only observed following the NNV challenge, with a higher sensitivity to HO WAFs than to LO WAFs. This study highlighted that environmentally realistic exposure to oil WAFs containing different compositions and concentrations of oil generated high adverse effects, especially in the larval stage. This kind of multi-marker approach is particularly relevant to characterize the toxicity fingerprint of environmental mixtures of hydrocarbons and PAHs.
Collapse
Affiliation(s)
- Pauline Pannetier
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France.
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France.
| | - Bénédicte Morin
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France
| | - Joëlle Cabon
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Morgane Danion
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Thierry Morin
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | | | - Stéphane Le Floch
- Centre de Documentation, de Recherche Et d'Expérimentations Sur Les Pollutions Accidentelles Des Eaux, CEDRE, 29200, Brest, France
| | - Jérôme Cachot
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France
| |
Collapse
|
3
|
Erramilli S, Neumann TV, Chester D, Dickey MD, Brown AC, Genzer J. Effect of surface interactions on the settlement of particles on a sinusoidally corrugated substrate. RSC Adv 2020; 10:11348-11356. [PMID: 35495333 PMCID: PMC9050433 DOI: 10.1039/c9ra10297c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Naturally-occurring surface topographies abound in nature and endow diverse properties, i.e., superhydrophobicity, adhesion, anti-fouling, self-cleaning, anti-glare, anti-bacterial, and many others. Researchers have attempted to replicate such topographies to create human-made surfaces with desired functionalities. For example, combining the surface topography with judicial chemical composition could provide an effective, non-toxic solution to combat non-specific biofouling. A systematic look at the effect of geometry, modulus, and chemistry on adhesion is warranted. In this work, we use a model system that comprises silica (SiO x ) beads interacting with a substrate made of a commercial polydimethylsiloxane kit (PDMS, Sylgard 184) featuring a sinusoidal topography. To examine the impact of interactions on particle settlement, we functionalize the surfaces of both the PDMS substrate and the SiO x beads with polyacrylic acid (PAA) and polyethyleneimine (PEI), respectively. We also use the PDMS commercial kit coated with liquid glass (LG) to study the effect of the substrate modulus on particle settlement. Substrates with a higher aspect ratio (i.e., amplitude/periodicity) encourage adsorption of particles along the sides of the channel compared with substrates with lower aspect ratio. We employ colloidal probe microscopy to demonstrate the effect of interaction between the substrate and the particle. The interplay among the surface modulus, geometry, and interactions between the surface and the particle governs particle settlement on sinusoidally-corrugated substrates.
Collapse
Affiliation(s)
- Shreya Erramilli
- Department of Materials Science & Engineering, North Carolina State University Raleigh NC 27695-7907 USA
| | - Taylor V Neumann
- Department of Chemical & Biomolecular Engineering, North Carolina State University Raleigh NC 27695-7905 USA
| | - Daniel Chester
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill Raleigh NC 27695-7115 USA
- Comparative Medicine Institute, North Carolina State University Raleigh NC 27695-7905 USA
| | - Michael D Dickey
- Department of Chemical & Biomolecular Engineering, North Carolina State University Raleigh NC 27695-7905 USA
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill Raleigh NC 27695-7115 USA
- Comparative Medicine Institute, North Carolina State University Raleigh NC 27695-7905 USA
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering, North Carolina State University Raleigh NC 27695-7905 USA
| |
Collapse
|
4
|
Erramilli S, Genzer J. Influence of surface topography attributes on settlement and adhesion of natural and synthetic species. SOFT MATTER 2019; 15:4045-4067. [PMID: 31066434 DOI: 10.1039/c9sm00527g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface topographies of various sizes, shapes, and spatial organization abound in nature. They endow properties such as super-hydrophobicity, reversible adhesion, anti-fouling, self-cleaning, anti-glare, and anti-bacterial, just to mention a few. Researchers have long attempted to replicate these structures to create artificial surfaces with the functionalities found in nature. In this review, we decompose the attributes of surface topographies into their constituents, namely feature dimensions, geometry, and stiffness, and examine how they contribute (individually or collectively) to settlement and adhesion of natural organisms and synthetic particles on the surface. The size of features that comprise the topography affects the contact area between the particle and surface as well as its adhesion and contributes to the observed adsorptive properties of the surface. The geometry of surface perturbations can also affect the contact area and gives rise to anisotropic particle settlement. Surface topography also affects the local stiffness of the surface and governs the adhesion strength on the surface. Overall, systematically studying attributes of surface topography and elucidating how each of them affects adhesion and settlement of particles will facilitate the design of topographically-corrugated surfaces with desired adsorption characteristics.
Collapse
Affiliation(s)
- Shreya Erramilli
- Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
5
|
Pannetier P, Morin B, Clérandeau C, Lacroix C, Cabon J, Cachot J, Danion M. Comparative biomarker responses in Japanese medaka (Oryzias latipes) exposed to benzo[a]pyrene and challenged with betanodavirus at three different life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:964-976. [PMID: 30380501 DOI: 10.1016/j.scitotenv.2018.10.256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
It is now well documented that several contaminants can modulate the fish immune system, leading to disrupted host resistance against pathogens and increased incidence of disease. Since fish are usually co-exposed to chemicals and pathogens in the natural environment, analysis of the immunotoxic effects of pollutants is particularly relevant. The authorities in the European Union have recommended the development of toxicity assays on cell cultures and embryos, as an alternative to testing in vertebrates. This is why in our study, a fish immune challenge assay was developed for the early life stages of Japanese medaka to evaluate and compare the relevance of new biomarkers. Fish were exposed to benzo[a]pyrene (BaP), a model pollutant, for 8days at the embryonic stage, or for 48h at the larvae and juvenile stages, and fish were infected with betanodavirus by bath-challenge of 106TCID50/mL. Biometric changes and induction of malformations were observed after embryonic exposure. DNA damage and induction of EROD activity were recorded at the end of all chemical exposures. Viral infection increased the mortality rate significantly and disturbed the behavior of fish after light stimulation. While BaP exposure increased swimming speed, betanodavirus infection slowed swimming activity. In larvae co-exposed to BaP and the virus, the viral titer in the whole body was higher than in fish infected only with the virus. This study highlighted the sensitivity and usefulness of the immune challenge assay on the early life stages of Japanese medaka to evaluate the toxic effects of pollutants.
Collapse
Affiliation(s)
- Pauline Pannetier
- Bordeaux University, EPOC Laboratory, UMR 5805, F-33400 Talence, France
| | - Bénédicte Morin
- Bordeaux University, EPOC Laboratory, UMR 5805, F-33400 Talence, France
| | | | - Camille Lacroix
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (CEDRE), 715 Rue Alain Colas, 29200 Brest, France
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jérôme Cachot
- Bordeaux University, EPOC Laboratory, UMR 5805, F-33400 Talence, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
6
|
Yong CY, Yeap SK, Omar AR, Tan WS. Advances in the study of nodavirus. PeerJ 2017; 5:e3841. [PMID: 28970971 PMCID: PMC5622607 DOI: 10.7717/peerj.3841] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022] Open
Abstract
Nodaviruses are small bipartite RNA viruses which belong to the family of Nodaviridae. They are categorized into alpha-nodavirus, which infects insects, and beta-nodavirus, which infects fishes. Another distinct group of nodavirus infects shrimps and prawns, which has been proposed to be categorized as gamma-nodavirus. Our current review focuses mainly on recent studies performed on nodaviruses. Nodavirus can be transmitted vertically and horizontally. Recent outbreaks have been reported in China, Indonesia, Singapore and India, affecting the aquaculture industry. It also decreased mullet stock in the Caspian Sea. Histopathology and transmission electron microscopy (TEM) are used to examine the presence of nodaviruses in infected fishes and prawns. For classification, virus isolation followed by nucleotide sequencing are required. In contrast to partial sequence identification, profiling the whole transcriptome using next generation sequencing (NGS) offers a more comprehensive comparison and characterization of the virus. For rapid diagnosis of nodavirus, assays targeting the viral RNA based on reverse-transcription PCR (RT-PCR) such as microfluidic chips, reverse-transcription loop-mediated isothermal amplification (RT-LAMP) and RT-LAMP coupled with lateral flow dipstick (RT-LAMP-LFD) have been developed. Besides viral RNA detections, diagnosis based on immunological assays such as enzyme-linked immunosorbent assay (ELISA), immunodot and Western blotting have also been reported. In addition, immune responses of fish and prawn are also discussed. Overall, in fish, innate immunity, cellular type I interferon immunity and humoral immunity cooperatively prevent nodavirus infections, whereas prawns and shrimps adopt different immune mechanisms against nodavirus infections, through upregulation of superoxide anion, prophenoloxidase, superoxide dismutase (SOD), crustin, peroxinectin, anti-lipopolysaccharides and heat shock proteins (HSP). Potential vaccines for fishes and prawns based on inactivated viruses, recombinant proteins or DNA, either delivered through injection, oral feeding or immersion, are also discussed in detail. Lastly, a comprehensive review on nodavirus virus-like particles (VLPs) is presented. In recent years, studies on prawn nodavirus are mainly focused on Macrobrachium rosenbergii nodavirus (MrNV). Recombinant MrNV VLPs have been produced in prokaryotic and eukaryotic expression systems. Their roles as a nucleic acid delivery vehicle, a platform for vaccine development, a molecular tool for mechanism study and in solving the structures of MrNV are intensively discussed.
Collapse
Affiliation(s)
- Chean Yeah Yong
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|