1
|
Guidi P, Bernardeschi M, Palumbo M, Buttino I, Vitiello V, Scarcelli V, Chiaretti G, Fiorati A, Pellegrini D, Pontorno L, Bonciani L, Punta C, Corsi I, Frenzilli G. Eco-Friendly Engineered Nanomaterials Coupled with Filtering Fine-Mesh Net as a Promising Tool to Remediate Contaminated Freshwater Sludges: An Ecotoxicity Investigation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:396. [PMID: 36770355 PMCID: PMC9920148 DOI: 10.3390/nano13030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The use of eco-friendly engineered nanomaterials represents a recent solution for an effective and safe treatment of contaminated dredging sludge. In this study, an eco-designed engineered material based on cross-linked nanocellulose (CNS) was applied for the first time to decontaminate a real matrix from heavy metals (namely Zn, Ni, Cu, and Fe) and other undesired elements (mainly Ba and As) in a lab-scale study, with the aim to design a safe solution for the remediation of contaminated matrices. Contaminated freshwater sludge was treated with CNS coupled with a filtering fine-mesh net, and the obtained waters were tested for acute and sublethal toxicity. In order to check the safety of the proposed treatment system, toxicity tests were conducted by exposing the bacterium Aliivibrio fischeri and the crustacean Heterocypris incongruens, while subtoxicity biomarkers such as lysosomal membrane stability, genetic, and chromosomal damage assessment were performed on the freshwater bivalve Dreissena polymorpha. Dredging sludge was found to be genotoxic, and such genotoxicity was mitigated by the combined use of CNS and a filtering fine-mesh net. Chemical analyses confirmed the results by highlighting the abetment of target contaminants, indicating the present model as a promising tool in freshwater sludge nanoremediation.
Collapse
Affiliation(s)
- Patrizia Guidi
- Department of Clinical and Experimental Medicine, Section of Applied Biology and Genetics, and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy
| | - Margherita Bernardeschi
- Department of Clinical and Experimental Medicine, Section of Applied Biology and Genetics, and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy
| | - Mara Palumbo
- Department of Clinical and Experimental Medicine, Section of Applied Biology and Genetics, and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedro, 38, 57123 Livorno, Italy
| | - Valentina Vitiello
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedro, 38, 57123 Livorno, Italy
| | - Vittoria Scarcelli
- Department of Clinical and Experimental Medicine, Section of Applied Biology and Genetics, and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy
| | - Gianluca Chiaretti
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedro, 38, 57123 Livorno, Italy
| | - Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, and INSTM Local Unit, Politecnico di Milano, 20131 Milano, Italy
| | - David Pellegrini
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedro, 38, 57123 Livorno, Italy
| | - Lorenzo Pontorno
- Biochemie Lab. S.r.l, Via di Limite 27G, 50013 Campi Bisenzio, Italy
| | - Lisa Bonciani
- Biochemie Lab. S.r.l, Via di Limite 27G, 50013 Campi Bisenzio, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, and INSTM Local Unit, Politecnico di Milano, 20131 Milano, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, and INSTM Local Unit, University of Siena, 53100 Siena, Italy
| | - Giada Frenzilli
- Department of Clinical and Experimental Medicine, Section of Applied Biology and Genetics, and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
2
|
Iovine C, Mottola F, Santonastaso M, Finelli R, Agarwal A, Rocco L. In vitro ameliorative effects of ellagic acid on vitality, motility and DNA quality in human spermatozoa. Mol Reprod Dev 2021; 88:167-174. [PMID: 33522057 DOI: 10.1002/mrd.23455] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 01/16/2023]
Abstract
Oxidative stress (OS) plays a significant role in the etiology of male infertility, resulting in the impairment of male reproduction. This condition, characterized by an imbalance in the levels of oxidizing and antioxidant species in the seminal fluid, has a harmful impact on sperm functions and DNA integrity. The present study aimed to evaluate the anti-genotoxic action of ellagic acid, a polyphenolic molecule of natural origin having a powerful antigenotoxic, anti-inflammatory and antiproliferative role. An OS condition was induced in vitro by incubating normozoospermic human semen samples in benzene for 45, 60 and 90 min. DNA integrity was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay, RAPD-PCR was performed to calculate the genome template stability, while the percentage of intracellular reactive oxygen species (ROS) was assessed by the 2', 7'-dichlorofluorescein assay. Our results showed that ellagic acid has a consistent protective effect on DNA integrity, as well as on sperm vitality and motility, by counteracting generation of intracellular ROS. The results of this study suggest ellagic acid as a suitable molecule to protect sperm DNA from oxidative stress, with a potentially significant translational impact on the management of the male infertility.
Collapse
Affiliation(s)
- Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Marianna Santonastaso
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Renata Finelli
- American Center of Reproductive Medicine, Andrology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ashok Agarwal
- American Center of Reproductive Medicine, Andrology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
3
|
Bolognesi C, Cirillo S, Chipman JK. Comet assay in ecogenotoxicology: Applications in Mytilus sp. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:50-59. [PMID: 31255226 DOI: 10.1016/j.mrgentox.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
The comet assay is a sensitive technique to detect DNA damage caused by exposure to genotoxic chemical and physical agents and is widely used in ecotoxicology. The assay has been applied in aquatic species, mainly fish and bivalves, in field biomonitoring programs and in experimental studies. The aim of the present study was to retrieve and review the published evidence to define the role of the comet assay in the assessment of genotoxic pollutants. The study focused on the application of the test in Mytilus sp, used as a sentinel organism. Twenty-one biomonitoring studies, carried out in wild and in transplanted mussels, were evaluated. An increase of the comet parameters in animals from polluted areas with respect to the controls was observed in the majority of the studies with a large variability (frequency ratio:1.2-14.5) associated with types and extent of exposure to pollutants. Three studies out of 21 reported a lack of response. Heavy metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and pesticides were the main types of chemicals detected in sediments and/or mussel tissues from polluted areas. Twenty-nine laboratory studies were retrieved showing the sensitivity of the comet assay in detecting DNA damage in mussels exposed to the most relevant pollutants and mixtures of relevant contaminants, such as pharmaceuticals, anti-fouling agents or crude oil. The comet test also appeared to be a suitable approach to detect the genotoxic effects of nanoparticles. In some studies problems in the interpretation of data or discrepancies between the results from different laboratories were noted. Critical steps in experimental protocol and characterization of pollution, environmental variables such as temperature, salinity, food availability, physiological and pathological status of the animals are important factors which should be controlled and considered in the analysis of the results.
Collapse
Affiliation(s)
- Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy.
| | - Silvia Cirillo
- School of Cellular and Molecular Medicine, University of Bristol, UK
| | | |
Collapse
|
4
|
Gajski G, Žegura B, Ladeira C, Pourrut B, Del Bo’ C, Novak M, Sramkova M, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales – (Part 1 Invertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:82-113. [DOI: 10.1016/j.mrrev.2019.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
|
5
|
Baini M, Fossi MC, Galli M, Caliani I, Campani T, Finoia MG, Panti C. Abundance and characterization of microplastics in the coastal waters of Tuscany (Italy): The application of the MSFD monitoring protocol in the Mediterranean Sea. MARINE POLLUTION BULLETIN 2018; 133:543-552. [PMID: 30041348 DOI: 10.1016/j.marpolbul.2018.06.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 05/17/2023]
Abstract
Monitoring efforts are required to understand the sources, distribution and abundance of microplastic pollution. To verify the abundance of microplastics along the Tuscan coastal waters (Italy), water-column and surface samples were collected in two seasons across four transects at different distances to the coast (0.5, 5, 10 and 20 km), within the implementation of the European Marine Strategy Framework Directive. The results show an average concentration of 0.26 items/m3 in the water-column samples and 41.1 g/km2 and 69,161.3 items/km2 of floating microplastics, with an increase with the distance to the coast The seasonality and the sampling area do not affect the abundance of microplastics. The most abundant size class is 1-2.5 mm as fragments and sheets suggesting that fragmentation of larger polyethylene and polypropylene items could be the main source of microplastics. These data represent the application of a harmonized protocol to make the data on microplastics comparable and reliable.
Collapse
Affiliation(s)
- Matteo Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; National Inter-University Consortium for Marine Sciences, CoNISMa, ULR Siena, Piazzale Flaminio 9, 00182 Roma, Italy.
| | - Maria Cristina Fossi
- Department of Physical Sciences, Earth and Environment, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; National Inter-University Consortium for Marine Sciences, CoNISMa, ULR Siena, Piazzale Flaminio 9, 00182 Roma, Italy
| | - Matteo Galli
- Department of Physical Sciences, Earth and Environment, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; National Inter-University Consortium for Marine Sciences, CoNISMa, ULR Siena, Piazzale Flaminio 9, 00182 Roma, Italy
| | - Ilaria Caliani
- Department of Physical Sciences, Earth and Environment, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; National Inter-University Consortium for Marine Sciences, CoNISMa, ULR Siena, Piazzale Flaminio 9, 00182 Roma, Italy
| | - Tommaso Campani
- Department of Physical Sciences, Earth and Environment, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; National Inter-University Consortium for Marine Sciences, CoNISMa, ULR Siena, Piazzale Flaminio 9, 00182 Roma, Italy
| | - Maria Grazia Finoia
- ISPRA, Institute for Environmental Protection and Research, Via V. Brancati 48, 00144 Rome, Italy
| | - Cristina Panti
- Department of Physical Sciences, Earth and Environment, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; National Inter-University Consortium for Marine Sciences, CoNISMa, ULR Siena, Piazzale Flaminio 9, 00182 Roma, Italy
| |
Collapse
|