1
|
Kamalanathan M, Hillhouse J, Claflin N, Rodkey T, Mondragon A, Prouse A, Nguyen M, Quigg A. Influence of nutrient status on the response of the diatom Phaeodactylum tricornutum to oil and dispersant. PLoS One 2021; 16:e0259506. [PMID: 34851969 PMCID: PMC8635359 DOI: 10.1371/journal.pone.0259506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022] Open
Abstract
Phytoplankton play a central role in our ecosystems, they are responsible for nearly 50 percent of the global primary productivity and major drivers of macro-elemental cycles in the ocean. Phytoplankton are constantly subjected to stressors, some natural such as nutrient limitation and some manmade such as oil spills. With increasing oil exploration activities in coastal zones in the Gulf of Mexico and elsewhere, an oil spill during nutrient-limited conditions for phytoplankton growth is highly likely. We performed a multifactorial study exposing the diatom Phaeodactylum tricornutum (UTEX 646) to oil and/or dispersants under nitrogen and silica limitation as well as co-limitation of both nutrients. Our study found that treatments with nitrogen limitation (-N and–N-Si) showed overall lower growth and chlorophyll a, lower photosynthetic antennae size, lower maximum photosynthetic efficiency, lower protein in exopolymeric substance (EPS), but higher connectivity between photosystems compared to non-nitrogen limited treatments (-Si and +N+Si) in almost all the conditions with oil and/or dispersants. However, certain combinations of nutrient limitation and oil and/or dispersant differed from this trend indicating strong interactive effects. When analyzed for significant interactive effects, the–N treatment impact on cellular growth in oil and oil plus dispersant conditions; and oil and oil plus dispersant conditions on cellular growth in–N-Si and–N treatments were found to be significant. Overall, we demonstrate that nitrogen limitation can affect the oil resistant trait of P. tricornutum, and oil with and without dispersants can have interactive effects with nutrient limitation on this diatom.
Collapse
Affiliation(s)
- Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- * E-mail: ,
| | - Jessica Hillhouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Noah Claflin
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Talia Rodkey
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Andrew Mondragon
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Alexandra Prouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Michelle Nguyen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
2
|
Quigg A, Parsons M, Bargu S, Ozhan K, Daly KL, Chakraborty S, Kamalanathan M, Erdner D, Cosgrove S, Buskey EJ. Marine phytoplankton responses to oil and dispersant exposures: Knowledge gained since the Deepwater Horizon oil spill. MARINE POLLUTION BULLETIN 2021; 164:112074. [PMID: 33540275 DOI: 10.1016/j.marpolbul.2021.112074] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The Deepwater Horizon oil spill of 2010 brought the ecology and health of the Gulf of Mexico to the forefront of the public's and scientific community's attention. Not only did we need a better understanding of how this oil spill impacted the Gulf of Mexico ecosystem, but we also needed to apply this knowledge to help assess impacts from perturbations in the region and guide future response actions. Phytoplankton represent the base of the food web in oceanic systems. As such, alterations of the phytoplankton community propagate to upper trophic levels. This review brings together new insights into the influence of oil and dispersant on phytoplankton. We bring together laboratory, mesocosm and field experiments, including insights into novel observations of harmful algal bloom (HAB) forming species and zooplankton as well as bacteria-phytoplankton interactions. We finish by addressing knowledge gaps and highlighting key topics for research in novel areas.
Collapse
Affiliation(s)
- Antonietta Quigg
- Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Michael Parsons
- Florida Gulf Coast University, 10501 FGCU Blvd South, Fort Myers, FL 33965, USA.
| | - Sibel Bargu
- Louisiana State University, 1235 Energy, Coast & Environment Building, Baton Rouge, LA 70803, USA.
| | - Koray Ozhan
- Middle East Technical University, P.O. Box 28, 33731 Erdemli, Mersin, Turkey.
| | - Kendra L Daly
- University of South Florida, 140 Seventh Ave S., St. Petersburg, FL 33701, USA.
| | - Sumit Chakraborty
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | - Manoj Kamalanathan
- Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Deana Erdner
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Sarah Cosgrove
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Edward J Buskey
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
3
|
Bretherton L, Hillhouse J, Kamalanathan M, Finkel ZV, Irwin AJ, Quigg A. Trait-dependent variability of the response of marine phytoplankton to oil and dispersant exposure. MARINE POLLUTION BULLETIN 2020; 153:110906. [PMID: 32056862 DOI: 10.1016/j.marpolbul.2020.110906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
The Deepwater Horizon oil spill released millions of barrels of crude oil into the Gulf of Mexico, and saw widespread use of the chemical dispersant Corexit. We assessed the role of traits, such as cell size, cell wall, motility, and mixotrophy on the growth and photosynthetic response of 15 phytoplankton taxa to oil and Corexit. We collected growth and photosynthetic data on five algal cultures. These responses could be separated into resistant (Tetraselmis astigmatica, Ochromonas sp., Heterocapsa pygmaea) and sensitive (Micromonas pusilla, Prorocentrum minimum). We combined this data with 10 species previously studied and found that cell size is most important in determining the biomass response to oil, whereas motility/mixotrophy is more important in the dispersed oil. Our analysis accounted for a third of the variance observed, so further work is needed to identify other factors that contribute to oil resistance.
Collapse
Affiliation(s)
- Laura Bretherton
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Jessica Hillhouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew J Irwin
- Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA; Department of Oceanography, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Bera G, Doyle S, Passow U, Kamalanathan M, Wade TL, Sylvan JB, Sericano JL, Gold G, Quigg A, Knap AH. Biological response to dissolved versus dispersed oil. MARINE POLLUTION BULLETIN 2020; 150:110713. [PMID: 31757392 DOI: 10.1016/j.marpolbul.2019.110713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
The water-soluble compounds of oil (e.g. low molecular weight PAHs) dissolve as a function of their physicochemical properties and environmental conditions, while the non-soluble compounds exist as dispersed droplets. Both the chemical and physical form of oil will affect the biological response. We present data from a mesocosm study comparing the microbial response to the water-soluble fraction (WSF), versus a water-accommodated fraction of oil (WAF), which contains both dispersed and dissolved oil components. WAF and WSF contained similar concentrations of low molecular weight PAHs, but concentrations of 4- and 5-ring PAHs were higher in WAF compared to WSF. Microbial communities were significantly different between WSF and WAF treatments, primary productivity was reduced more in WSF than in WAF, and concentrations of transparent exopolymeric particles were highest in WSF and lowest in the controls. These differences highlight the importance of dosing strategy for mesocosm and toxicity tests.
Collapse
Affiliation(s)
- Gopal Bera
- Texas A & M University, College Station, TX, USA.
| | - Shawn Doyle
- Texas A & M University, College Station, TX, USA
| | | | | | - Terry L Wade
- Texas A & M University, College Station, TX, USA
| | | | | | - Gerardo Gold
- Texas A & M University, College Station, TX, USA
| | - Antonietta Quigg
- Texas A & M University, College Station, TX, USA; Texas A & M University at Galveston, Galveston, TX, USA
| | | |
Collapse
|
5
|
Mearns AJ, Bissell M, Morrison AM, Rempel-Hester MA, Arthur C, Rutherford N. Effects of pollution on marine organisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1229-1252. [PMID: 31513312 DOI: 10.1002/wer.1218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This review covers selected 2018 articles on the biological effects of pollutants, including human physical disturbances, on marine and estuarine plants, animals, ecosystems, and habitats. The review, based largely on journal articles, covers field and laboratory measurement activities (bioaccumulation of contaminants, field assessment surveys, toxicity testing, and biomarkers) as well as pollution issues of current interest including endocrine disrupters, emerging contaminants, wastewater discharges, marine debris, dredging, and disposal. Special emphasis is placed on effects of oil spills and marine debris due largely to the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico and proliferation of data on the assimilation and effects of marine debris. Several topical areas reviewed in the past (e.g., mass mortalities ocean acidification) were dropped this year. The focus of this review is on effects, not on pollutant sources, chemistry, fate, or transport. There is considerable overlap across subject areas (e.g., some bioaccumulation data may be appear in other topical categories such as effects of wastewater discharges, or biomarker studies appearing in oil toxicity literature). Therefore, we strongly urge readers to use keyword searching of the text and references to locate related but distributed information. Although nearly 400 papers are cited, these now represent a fraction of the literature on these subjects. Use this review mainly as a starting point. And please consult the original papers before citing them.
Collapse
Affiliation(s)
- Alan J Mearns
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | - Mathew Bissell
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | | | | | | | - Nicolle Rutherford
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| |
Collapse
|