1
|
Wolfe K, Byrne M. Dead foundation species create coral rubble habitat that benefits a resilient pest species. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106740. [PMID: 39255629 DOI: 10.1016/j.marenvres.2024.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Critical loss of habitat is the greatest threat to biodiversity, yet some species are inherently plastic to and may even benefit from changes in ecosystem states. The crown-of-thorns sea star (CoTS; Acanthaster spp.) may be one such organism. CoTS are large corallivores native to the tropical Indo-Pacific and in unexplained high densities, can adversely affect entire coral reefs. Proximal causes of CoTS outbreaks remain elusive, so this phenomenon remains a daunting and costly challenge for reef conservation and management. Amplifying anthropogenic impacts and new empirical data point to the degraded reef hypothesis to explain the episodic nature of CoTS population outbreaks. We posit that loss of live coral paradoxically benefits CoTS juveniles, which accumulate in their rubble nursery habitat before conditions trigger their pulsed emergence as coral-eaters. We review trait plasticity across the CoTS life cycle and present the degraded reef hypothesis in an integrative understanding of their propensity to outbreak.
Collapse
Affiliation(s)
- Kennedy Wolfe
- School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Maria Byrne
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Matthews SA, Williamson DH, Beeden R, Emslie MJ, Abom RTM, Beard D, Bonin M, Bray P, Campili AR, Ceccarelli DM, Fernandes L, Fletcher CS, Godoy D, Hemingson CR, Jonker MJ, Lang BJ, Morris S, Mosquera E, Phillips GL, Sinclair-Taylor TH, Taylor S, Tracey D, Wilmes JC, Quincey R. Protecting Great Barrier Reef resilience through effective management of crown-of-thorns starfish outbreaks. PLoS One 2024; 19:e0298073. [PMID: 38656948 PMCID: PMC11042723 DOI: 10.1371/journal.pone.0298073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resilience-based management is essential to protect ecosystems in the Anthropocene. Unlike large-scale climate threats to Great Barrier Reef (GBR) corals, outbreaks of coral-eating crown-of-thorns starfish (COTS; Acanthaster cf. solaris) can be directly managed through targeted culling. Here, we evaluate the outcomes of a decade of strategic COTS management in suppressing outbreaks and protecting corals during the 4th COTS outbreak wave at reef and regional scales (sectors). We compare COTS density and coral cover dynamics during the 3rd and 4th outbreak waves. During the 4th outbreak wave, sectors that received limited to no culling had sustained COTS outbreaks causing significant coral losses. In contrast, in sectors that received timely and sufficient cull effort, coral cover increased substantially, and outbreaks were suppressed with COTS densities up to six-fold lower than in the 3rd outbreak wave. In the Townsville sector for example, despite exposure to comparable disturbance regimes during the 4th outbreak wave, effective outbreak suppression coincided with relative increases in sector-wide coral cover (44%), versus significant coral cover declines (37%) during the 3rd outbreak wave. Importantly, these estimated increases span entire sectors, not just reefs with active COTS control. Outbreaking reefs with higher levels of culling had net increases in coral cover, while the rate of coral loss was more than halved on reefs with lower levels of cull effort. Our results also indicate that outbreak wave progression to adjoining sectors has been delayed, probably via suppression of COTS larval supply. Our findings provide compelling evidence that proactive, targeted, and sustained COTS management can effectively suppress COTS outbreaks and deliver coral growth and recovery benefits at reef and sector-wide scales. The clear coral protection outcomes demonstrate the value of targeted manual culling as both a scalable intervention to mitigate COTS outbreaks, and a potent resilience-based management tool to "buy time" for coral reefs, protecting reef ecosystem functions and biodiversity as the climate changes.
Collapse
Affiliation(s)
| | | | - Roger Beeden
- Great Barrier Reef Marine Park Authority, Townsville, QLD, Australia
| | | | | | | | - Mary Bonin
- Great Barrier Reef Foundation, Brisbane City, QLD, Australia
| | - Peran Bray
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | | | - Leanne Fernandes
- Great Barrier Reef Marine Park Authority, Townsville, QLD, Australia
| | | | - Dan Godoy
- Blue Planet Marine, Canberra, ACT, Australia
| | - Christopher R. Hemingson
- The University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, United States of America
| | | | - Bethan J. Lang
- Great Barrier Reef Marine Park Authority, Townsville, QLD, Australia
- The University of New South Wales, Sydney, NSW, Australia
- ARC Centre of Excellence, James Cook University, Townsville, QLD, Australia
| | | | | | - Gareth L. Phillips
- Association of Marine Park Tourism Operators Ltd, Cairns, QLD, Australia
| | | | - Sascha Taylor
- Queensland Department of Environment and Science, Queensland Parks and Wildlife Service and Partnerships (Marine Parks), Brisbane, Queensland, Australia
| | - Dieter Tracey
- Great Barrier Reef Marine Park Authority, Townsville, QLD, Australia
| | | | - Richard Quincey
- Great Barrier Reef Marine Park Authority, Townsville, QLD, Australia
| |
Collapse
|
3
|
Doll PC, Uthicke S, Caballes CF, Patel F, Gomez Cabrera MDC, Lang BJ, Pratchett MS. Induction of larval settlement in crown-of-thorns starfish is not mediated by conspecific cues. Sci Rep 2023; 13:17119. [PMID: 37816798 PMCID: PMC10564929 DOI: 10.1038/s41598-023-44422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/08/2023] [Indexed: 10/12/2023] Open
Abstract
Population irruptions of crown-of-thorns starfish (COTS; Acanthaster spp.) remain a major cause of coral reef degradation throughout the Pacific and Indian Oceans and are inherently modulated by larval settlement and recruitment success. Gregarious larval settlement, as exhibited by many other ecologically important marine invertebrates, can catalyse population growth and replenishment. However, whether conspecific cues induce or influence the settlement of COTS larvae remains a critical information gap. This experimental study examined the induction of COTS settlement in response to a range of conspecific cues associated with early- and late-stage herbivorous juveniles, corallivorous juveniles and adults. Competent COTS larvae were generally not induced to settle by the presence of conspecifics or cues associated with conspecifics, while the settlement success of COTS in the presence of coralline algae was not inhibited or enhanced by adding conspecific conditioned seawater. Rather than being reinforced by gregarious settlement, the recruitment of COTS populations appears dependent on associative settlement cues (i.e., coralline algae and/or associated microbial communities) signalling suitable benthic habitat.
Collapse
Affiliation(s)
- Peter C Doll
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Ciemon F Caballes
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- University of Guam - Marine Laboratory, Mangilao, GU, 96923, USA
| | - Frances Patel
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | | | - Bethan J Lang
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Morgan S Pratchett
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
4
|
Structure and proteomic analysis of the crown-of-thorns starfish (Acanthaster sp.) radial nerve cord. Sci Rep 2023; 13:3349. [PMID: 36849815 PMCID: PMC9971248 DOI: 10.1038/s41598-023-30425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/22/2023] [Indexed: 03/01/2023] Open
Abstract
The nervous system of the Asteroidea (starfish or seastar) consists of radial nerve cords (RNCs) that interconnect with a ring nerve. Despite its relative simplicity, it facilitates the movement of multiple arms and numerous tube feet, as well as regeneration of damaged limbs. Here, we investigated the RNC ultrastructure and its molecular components within the of Pacific crown-of-thorns starfish (COTS; Acanthaster sp.), a well-known coral predator that in high-density outbreaks has major ecological impacts on coral reefs. We describe the presence of an array of unique small bulbous bulbs (40-100 μm diameter) that project from the ectoneural region of the adult RNC. Each comprise large secretory-like cells and prominent cilia. In contrast, juvenile COTS and its congener Acanthaster brevispinus lack these features, both of which are non-corallivorous. Proteomic analysis of the RNC (and isolated neural bulbs) provides the first comprehensive echinoderm protein database for neural tissue, including numerous secreted proteins associated with signalling, transport and defence. The neural bulbs contained several neuropeptides (e.g., bombyxin-type, starfish myorelaxant peptide, secretogranin 7B2-like, Ap15a-like, and ApNp35) and Deleted in Malignant Brain Tumor 1-like proteins. In summary, this study provides a new insight into the novel traits of COTS, a major pest on coral reefs, and a proteomics resource that can be used to develop (bio)control strategies and understand molecular mechanisms of regeneration.
Collapse
|
5
|
Doll PC, Uthicke S, Caballes CF, Diaz-Pulido G, Abdul Wahab MA, Lang BJ, Jeong SY, Pratchett MS. Settlement cue selectivity by larvae of the destructive crown-of-thorns starfish. Biol Lett 2023; 19:20220399. [PMID: 36693424 PMCID: PMC9873471 DOI: 10.1098/rsbl.2022.0399] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Population irruptions of crown-of-thorns starfish (COTS) cause extensive degradation of coral reefs, threatening the structure and function of these important ecosystems. For population irruptions to initiate and spread, large numbers of planktonic larvae have to successfully transition into their benthic life-history stage (i.e. settlement), whereby larval behaviour and the presence of settlement cues may shape spatial patterns of recruitment and adult densities. Our results demonstrate that a wide range of coralline algae species induce COTS larvae to settle; however, the capacity to promote settlement success varied manyfold among algal species, ranging from greater than 90% in Melyvonnea cf. madagascariensis to less than 2% in Lithophyllum cf. kotschyanum and two Porolithon species at 24 h. Because many coralline algae species that promote high settlement success are prevalent in shallow reef habitats, our findings challenge the hypothesis that COTS larvae predominantly settle in deep water. Considering both larval behaviour and algal ecology, this study highlights the ecological significance of coralline algae communities in driving recruitment patterns of COTS. More specifically, the local abundance of highly inductive coralline algae (especially, Melyvonnea cf. madagascariensis) may explain some of the marked spatial heterogeneity of COTS populations and the incidence of population irruptions.
Collapse
Affiliation(s)
- Peter C. Doll
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Ciemon F. Caballes
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- National Science Foundation Established Program to Stimulate Competitive Research (NSF EPSCoR) - Guam Ecosystems Collaboratorium for Corals and Oceans, University of Guam – Marine Laboratory, Mangilao, Guam 96923, USA
| | - Guillermo Diaz-Pulido
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
- School of Environment and Science, Coastal and Marine Research Centre, and Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia
| | | | - Bethan J. Lang
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - So Young Jeong
- School of Environment and Science, Coastal and Marine Research Centre, and Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Morgan S. Pratchett
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
6
|
Culling corallivores improves short-term coral recovery under bleaching scenarios. Nat Commun 2022; 13:2520. [PMID: 35534497 PMCID: PMC9085818 DOI: 10.1038/s41467-022-30213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/21/2022] [Indexed: 12/02/2022] Open
Abstract
Management of coral predators, corallivores, is recommended to improve coral cover on tropical coral reefs under projected increasing levels of accumulated thermal stress, but whether corallivore management can improve coral cover, which is necessary for large-scale operationalisation, remains equivocal. Here, using a multispecies ecosystem model, we investigate intensive management of an invertebrate corallivore, the Crown-of-Thorns Starfish (Acanthaster cf. solaris), and show that culling could improve coral cover at sub-reef spatial scales, but efficacy varied substantially within and among reefs. Simulated thermal stress events attenuated management-derived coral cover improvements and was dependent on the level of accumulated thermal stress, the thermal sensitivity of coral communities and the rate of corallivore recruitment at fine spatial scales. Corallivore management was most effective when accumulated thermal stress was low, coral communities were less sensitive to heat stress and in areas of high corallivore recruitment success. Our analysis informs how to manage a pest species to promote coral cover under future thermal stress events. This study uses multispecies modelling to show that the management of a coral predator, the crown-of-thorns starfish, could help corals recover following bleaching events. They show that management was most effective when heat stress severity for corals was low to moderate, when corals had lower heat sensitivity and when the recruitment rate of starfish was high.
Collapse
|
7
|
Crown of thorns starfish life-history traits contribute to outbreaks, a continuing concern for coral reefs. Emerg Top Life Sci 2022; 6:67-79. [PMID: 35225331 PMCID: PMC9023020 DOI: 10.1042/etls20210239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 11/24/2022]
Abstract
Crown of thorns starfish (COTS, Acanthaster sp.) are notorious for their destructive consumption of coral that decimates tropical reefs, an attribute unique among tropical marine invertebrates. Their populations can rapidly increase from 0–1 COTS ha−1 to more than 10–1000 COTS ha−1 in short order causing a drastic change to benthic communities and reducing the functional and species diversity of coral reef ecosystems. Population outbreaks were first identified to be a significant threat to coral reefs in the 1960s. Since then, they have become one of the leading causes of coral loss along with coral bleaching. Decades of research and significant investment in Australia and elsewhere, particularly Japan, have been directed towards identifying, understanding, and managing the potential causes of outbreaks and designing population control methods. Despite this, the drivers of outbreaks remain elusive. What is becoming increasingly clear is that the success of COTS is tied to their inherent biological traits, especially in early life. Survival of larval and juvenile COTS is likely to be enhanced by their dietary flexibility and resilience to variable food conditions as well as their phenotypically plastic growth dynamics, all magnified by the extreme reproductive potential of COTS. These traits enable COTS to capitalise on anthropogenic disturbances to reef systems as well as endure less favourable conditions.
Collapse
|
8
|
Pratchett MS, Caballes CF, Cvitanovic C, Raymundo ML, Babcock RC, Bonin MC, Bozec YM, Burn D, Byrne M, Castro-Sanguino C, Chen CCM, Condie SA, Cowan ZL, Deaker DJ, Desbiens A, Devantier LM, Doherty PJ, Doll PC, Doyle JR, Dworjanyn SA, Fabricius KE, Haywood MDE, Hock K, Hoggett AK, Høj L, Keesing JK, Kenchington RA, Lang BJ, Ling SD, Matthews SA, McCallum HI, Mellin C, Mos B, Motti CA, Mumby PJ, Stump RJW, Uthicke S, Vail L, Wolfe K, Wilson SK. Knowledge Gaps in the Biology, Ecology, and Management of the Pacific Crown-of-Thorns Sea Star Acanthaster sp. on Australia's Great Barrier Reef. THE BIOLOGICAL BULLETIN 2021; 241:330-346. [PMID: 35015620 DOI: 10.1086/717026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AbstractCrown-of-thorns sea stars (Acanthaster sp.) are among the most studied coral reef organisms, owing to their propensity to undergo major population irruptions, which contribute to significant coral loss and reef degradation throughout the Indo-Pacific. However, there are still important knowledge gaps pertaining to the biology, ecology, and management of Acanthaster sp. Renewed efforts to advance understanding and management of Pacific crown-of-thorns sea stars (Acanthaster sp.) on Australia's Great Barrier Reef require explicit consideration of relevant and tractable knowledge gaps. Drawing on established horizon scanning methodologies, this study identified contemporary knowledge gaps by asking active and/or established crown-of-thorns sea star researchers to pose critical research questions that they believe should be addressed to improve the understanding and management of crown-of-thorns sea stars on the Great Barrier Reef. A total of 38 participants proposed 246 independent research questions, organized into 7 themes: feeding ecology, demography, distribution and abundance, predation, settlement, management, and environmental change. Questions were further assigned to 48 specific topics nested within the 7 themes. During this process, redundant questions were removed, which reduced the total number of distinct research questions to 172. Research questions posed were mostly related to themes of demography (46 questions) and management (48 questions). The dominant topics, meanwhile, were the incidence of population irruptions (16 questions), feeding ecology of larval sea stars (15 questions), effects of elevated water temperature on crown-of-thorns sea stars (13 questions), and predation on juveniles (12 questions). While the breadth of questions suggests that there is considerable research needed to improve understanding and management of crown-of-thorns sea stars on the Great Barrier Reef, the predominance of certain themes and topics suggests a major focus for new research while also providing a roadmap to guide future research efforts.
Collapse
|
9
|
Doll PC, Messmer V, Uthicke S, Doyle JR, Caballes CF, Pratchett MS. DNA-Based Detection and Patterns of Larval Settlement of the Corallivorous Crown-of-Thorns Sea Star ( Acanthaster sp.). THE BIOLOGICAL BULLETIN 2021; 241:271-285. [PMID: 35015627 DOI: 10.1086/717539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AbstractPopulation irruptions of the western Pacific crown-of-thorns sea star (Acanthaster sp.) are a perennial threat to coral reefs and may be initiated by fluctuations in reproductive or settlement success. However, the processes dictating their early life history, particularly larval settlement, remain poorly understood given limitations in sampling larvae and newly settled juveniles in the field. Here, we introduce an innovative method to measure crown-of-thorns sea star settlement, using artificial settlement collectors and droplet digital polymerase chain reaction based on crown-of-thorns sea star-specific mitochondrial DNA primers. This study demonstrated the utility of this method and explored temporal and spatial patterns of crown-of-thorns sea star settlement on the Great Barrier Reef from 2016 to 2020. Settlement varied considerably between sampling periods at Rib Reef and peaked between October 2016 and January 2017. Our results further suggest that crown-of-thorns sea star larvae readily settle in shallow reef environments, with no preferential settlement detected between depths tested (4-12 m). Substantial variation between Great Barrier Reef regions was revealed in 2019-2020, because collectors deployed on reefs in the central Great Barrier Reef were >10 times as likely to record newly settled crown-of-thorns sea stars as reefs in the northern Great Barrier Reef near Lizard Island. The trends reported here add to our understanding of this critical life-history stage; however, further method validation and larger-scale studies are needed to address pertinent information gaps, such as the stock-recruitment dynamics of this species. Most importantly, fluctuations in crown-of-thorns sea star settlement can now be detected using this sampling protocol, which demonstrates its utility in heralding new and renewed population irruptions of this destructive sea star.
Collapse
|
10
|
Deaker DJ, Balogh R, Dworjanyn SA, Mos B, Byrne M. Echidnas of the Sea: The Defensive Behavior of Juvenile and Adult Crown-of-Thorns Sea Stars. THE BIOLOGICAL BULLETIN 2021; 241:259-270. [PMID: 35015617 DOI: 10.1086/716777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AbstractCrown-of-thorns sea stars are one of the most ecologically important tropical marine invertebrates, with boom-bust population dynamics that influence the community structure of coral reefs. Although predation is likely to influence the development of population outbreaks, little is known about the defensive behavior of crown-of-thorns sea stars. Righting behavior after being overturned, a key defensive response in echinoderms, was investigated for the newly settled herbivorous juvenile, the corallivorous juvenile, and adult stages of crown-of-thorns sea stars. The average righting time of the newly settled juveniles (0.3-1.0-mm diameter) was 2.74 minutes. For the coral-eating juveniles (15-55-mm diameter), the righting time (mean = 6.24 min) was faster in larger juveniles, and the mean righting time of the adults was 6.28 minutes. During righting and in response to being lifted off of the substrate, the juveniles and adults exhibited an arm curling response, during which their arms closed over their oral side, often forming a spine ball, a feature not known for other asteroids. The righting and curling responses of the corallivorous juveniles were influenced by the presence of a natural enemy, a coral guard crab, which caused the juveniles to spend more time with their arms curled. These behaviors indicate that crown-of-thorns sea stars use their spines to protect the soft tissue of their oral side. The highly defended morphology and behavioral adaptations of crown-of-thorns sea stars are likely to have evolved as antipredator mechanisms. This points to the potential importance of predators in regulating their populations, which may have decreased in recent times due to fishing, a factor that may contribute to outbreaks.
Collapse
|
11
|
Wilmes JC, Hoey AS, Pratchett MS. Contrasting size and fate of juvenile crown-of-thorns starfish linked to ontogenetic diet shifts. Proc Biol Sci 2020; 287:20201052. [PMID: 32693724 DOI: 10.1098/rspb.2020.1052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Population dynamics of organisms are shaped by the variation in phenotypic traits, often expressed even among individuals from the same cohort. For example, individual variation in the timing of ontogenetic shifts in diet and/or habitat greatly influences subsequent growth and survival of some organisms, with critical effects on population dynamics. Few studies of natural systems have, however, demonstrated that marked phenotypic variation in growth rates or body size among individuals within a modelled cohort is linked to dietary shifts and food availability. Population irruptions of the crown-of-thorns starfish are one of the foremost contributors to the global degradation of coral reefs, but causes of irruptions have been debated for decades. Here we demonstrate, based on extensive field sampling of juvenile starfish (n = 3532), that marked variation in body size among juvenile starfish is linked to an ontogenetic diet shift from coralline algae to coral. This transition in diet leads to exponential growth in juveniles and is essential for individuals to reach maturity. Because smaller individuals experience higher mortality and growth is stunted on an algal diet, the ontogenetic shift to corallivory enhances individual fitness and replenishment success. Our findings suggest that the availability of coral prey facilitates early ontogenetic diet shifts and may be fundamental in initiating population irruptions.
Collapse
Affiliation(s)
- Jennifer C Wilmes
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Andrew S Hoey
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Morgan S Pratchett
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
12
|
Deaker DJ, Mos B, Lin HA, Lawson C, Budden C, Dworjanyn SA, Byrne M. Diet flexibility and growth of the early herbivorous juvenile crown-of-thorns sea star, implications for its boom-bust population dynamics. PLoS One 2020; 15:e0236142. [PMID: 32687524 PMCID: PMC7371202 DOI: 10.1371/journal.pone.0236142] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022] Open
Abstract
The ecology of the early herbivorous juvenile stage of the crown-of-thorns sea star (COTS, Acanthaster spp.) is poorly understood, yet the success of this life stage is key to generating population outbreaks that devastate coral reefs. Crustose coralline algae (CCA) has been considered to be the main diet of herbivorous juveniles. In this study, we show that COTS can avail of a range of algal food. Juveniles were reared on CCA, Amphiroa sp., and biofilm, and survived for 10 months on all three diets. The juveniles fed CCA and Amphiroa sp. reached 15–16.5 mm diameter at ~ 6 months and maintained this size for the rest the experiment (an additional ~4 months). Juveniles fed biofilm grew more slowly and to a smaller maximum size (~3 mm diameter). However, when juveniles were switched from biofilm to CCA they resumed growth to a new asymptotic size (~13.5 mm, 13–20 months). In diet choice experiments, juveniles did not show a preference between Amphiroa sp. and CCA, but generally avoided biofilm. Our results show that juvenile COTS grew equally well on CCA and Amphiroa sp. and can subsist on biofilm for months. Some juveniles, mostly from the biofilm diet treatment, decreased in size for a time and this was followed by recovery. Flexibility in diet, growth, and prolonged maintenance of asymptotic size indicates capacity for growth plasticity in herbivorous juvenile COTS. There is potential for juvenile COTS to persist for longer than anticipated and increase in number as they wait for the opportunity to avail of coral prey. These findings complicate our ability to predict recruitment to the corallivorous stage and population outbreaks following larval settlement and the ability to understand the age structure of COTS populations.
Collapse
Affiliation(s)
- Dione J. Deaker
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| | - Benjamin Mos
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Huang-An Lin
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Corinne Lawson
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Claire Budden
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Symon A. Dworjanyn
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Maria Byrne
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|