1
|
Izar GM, Tan TY, Laurino IRA, Nobre CR, Vivas MPM, Gusso-Choueri PK, Felix CSA, Moreno BB, Abessa DMS, de Andrade JB, Martinez ST, da Rocha GO, Albergaria-Barbosa ACR. Plastic pellets make Excirolana armata more aggressive: Intraspecific interactions and isopod mortality differences between populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168611. [PMID: 37984664 DOI: 10.1016/j.scitotenv.2023.168611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Plastic pellets represent a significant component of microplastic (< 5 mm) pollution. Impacts caused by plastic pellets involve physical harm and toxicity related to ingestion and non-ingestion (such as the release of chemicals in leachates). The latter is the main route of exposure for invertebrate macrobenthic populations. This study aimed to compare the toxicity of plastic pellets in distinct marine macrobenthic populations, considering the influence of sediment characteristics (organic matter and grain size) and quality (contamination by hydrophobic chemicals) on ecotoxicological effects, as well as the influence of color on the toxicity of beach-stranded plastic pellets. We performed three experiments on plastic pellet exposure using Excirolana armata from beaches with high and low pellet density. When exposed to pellets, populations that inhabit beaches without pellets demonstrate higher mortality than those inhabiting beaches with high pellet densities. The mortality of E. armata to pellets was higher when the exposure occurred in sediment with high organic matter (OM), suggesting that chemicals were transferred from pellets to OM. Yellowish beach-stranded pellets induced higher mortality of E. armata than the white tones did. We also observed lethargic (near-dead) and dead individuals being preyed upon by healthy individuals, a cannibalistic behavior that raises an ecological concern regarding the negative effects of this exposure on intraspecific interactions in marine macrobenthic populations.
Collapse
Affiliation(s)
- G M Izar
- Interdisciplinary Center of Energy and Environment (CIEnAm), Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; Marine Geochemistry Laboratory, Institute of Geoscience, Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil.
| | - T Y Tan
- Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, the Netherlands; Wageningen Marine Research, Wageningen University & Research, Yerseke, the Netherlands
| | - I R A Laurino
- Laboratory of Management, Ecology and Marine Conservation/Oceanographic Institute (IO-USP) - Praça Oceanográfico, 191 - Butantã, São Paulo, SP 05508-120, Brazil
| | - C R Nobre
- Institute of Marine Sciences, Federal University of São Paulo (IMar/UNIFESP), Rua Dr. Carvalho de Mendonça, 144, 11070-102, Santos, São Paulo, Brazil
| | - M P M Vivas
- Interdisciplinary Center of Energy and Environment (CIEnAm), Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil
| | - P K Gusso-Choueri
- Biosciences Institute, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, São Paulo, Brazil; Department of Ecotoxicology, Santa Cecília University, Rua Oswaldo Cruz, 277, 1045-0907 Santos, São Paulo, Brazil
| | - C S A Felix
- Interdisciplinary Center of Energy and Environment (CIEnAm), Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; Institute of Chemistry, Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil
| | - B B Moreno
- Department of Ecotoxicology, Santa Cecília University, Rua Oswaldo Cruz, 277, 1045-0907 Santos, São Paulo, Brazil; Institute of Marine Sciences, Federal University of São Paulo (IMar/UNIFESP), Rua Dr. Carvalho de Mendonça, 144, 11070-102, Santos, São Paulo, Brazil
| | - D M S Abessa
- Biosciences Institute, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, São Paulo, Brazil
| | - J B de Andrade
- Interdisciplinary Center of Energy and Environment (CIEnAm), Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; SENAI-CIMATEC, Av. Orlando Gomes, 1845 - Piatã, 41650-010 Salvador, BA, Brazil; National Institute of Science and Technology in Energy and Environment (INCT), Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil
| | - S T Martinez
- SENAI-CIMATEC, Av. Orlando Gomes, 1845 - Piatã, 41650-010 Salvador, BA, Brazil
| | - G O da Rocha
- Interdisciplinary Center of Energy and Environment (CIEnAm), Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; Institute of Chemistry, Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; National Institute of Science and Technology in Energy and Environment (INCT), Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil
| | - A C R Albergaria-Barbosa
- Marine Geochemistry Laboratory, Institute of Geoscience, Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil
| |
Collapse
|
2
|
Bahia PVB, de Oliveira VA, Nascimento MM, Santos LO, da Rocha GO, de Andrade JB, Machado ME. Multivariate optimization of a green procedure for determination of emerging polycyclic aromatic nitrogen heterocycles in PM 2.5 from sites with different characteristics. Anal Bioanal Chem 2023; 415:6177-6189. [PMID: 37541975 DOI: 10.1007/s00216-023-04889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Emerging polycyclic aromatic nitrogen heterocycles (PANHs) contributes significantly to the health risk associated with inhaling polluted air. However, there is a lack of analytical methods with the needed performance to their determination. This study presents the optimization and validation for the first time of a green microscale extraction procedure for the determination of twenty-one PANHs, including carbazole, indole, and quinolone classes, in particulate matter (PM2.5) samples by gas chromatography-mass spectrometry. A simplex-centroid mixture design and full factorial design (23) were employed to optimize the following extraction parameters: type and volume of solvent, sample size, extraction time, and necessity of a cleanup step. Low limits of detection and quantification (LOD < 0.97 pg m-3 and LOQ < 3.24 pg m-3, respectively) were obtained in terms of matrix-matched calibration. The accuracy and precision of the method were adequate, with recoveries in three levels between 73 to 120% and intraday and interday relative standard deviations from 2.0 to 12.9% and 7.3 to 18.9%, respectively. The green character of the method was evaluated using the Analytical Greenness (AGREE) tool, where a score of 0.69 was obtained, indicating a great green procedure. The method was applied to PM2.5 samples collected from sites with different characteristics; the concentrations ranged from 69.3 pg m-3 (2-methylcarbazole) to 11,874 pg m-3 (carbazole) for individual PANHs and from 2306 to 24,530 pg m-3 for ∑21PANHs. Principal component analysis (PCA) and hierarchical clustering enabled discrimination of the sampling sites according to the PANHs concentrations. The score plots formed two distinct groups, one with samples containing higher concentrations of PANHs, corresponding to sites with a major influence from diesel emissions, and another group with minor PANH contents, corresponding to sites impacted by emissions from urban traffic and industrial activities.
Collapse
Affiliation(s)
- Pedro Victor Bomfim Bahia
- Instituto de Química, Programa de Pós-Graduação Em Química, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
- Centro Interdisciplinar de Energia E Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
| | - Valdiria Almeida de Oliveira
- Instituto de Química, Programa de Pós-Graduação Em Química, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
| | - Madson Moreira Nascimento
- Centro Interdisciplinar de Energia E Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
- Instituto Nacional de Ciência E Tecnologia Em Energia E Ambiente - INCT E&A, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
| | | | - Gisele Olimpio da Rocha
- Instituto de Química, Programa de Pós-Graduação Em Química, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
- Centro Interdisciplinar de Energia E Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
- Instituto Nacional de Ciência E Tecnologia Em Energia E Ambiente - INCT E&A, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
| | - Jailson Bittencourt de Andrade
- Centro Interdisciplinar de Energia E Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
- Instituto Nacional de Ciência E Tecnologia Em Energia E Ambiente - INCT E&A, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
- Centro Universitário SENAI-CIMATEC, Salvador, BA, 41650-010, Brazil
| | - Maria Elisabete Machado
- Instituto de Química, Programa de Pós-Graduação Em Química, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil.
- Centro Interdisciplinar de Energia E Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil.
- Instituto Nacional de Ciência E Tecnologia Em Energia E Ambiente - INCT E&A, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil.
| |
Collapse
|
3
|
Liu J, Deng S, Tong H, Yang Y, Tuheti A. Emission profiles, source identifications, and health risk of polycyclic aromatic hydrocarbons (PAHs) in a road tunnel located in Xi'an, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85125-85138. [PMID: 37380852 DOI: 10.1007/s11356-023-27996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
Understanding the sources and characteristics of PM2.5-bound PAHs from traffic-related pollution can provide valuable data for mitigating air contamination from traffic in local urban regions. However, little information on PAHs is available regarding the typical arterial highway-Qinling Mountains No.1 tunnel in Xi'an. We estimated the profiles, sources, and emission factors of PM2.5-bound PAHs in this tunnel. The total PAH concentrations were 22.78 ng·m-3 and 52.80 ng·m-3 at the tunnel middle and exit, which were 1.09 and 3.84 times higher than that at the tunnel entrance. Pyr, Flt, Phe, Chr, BaP, and BbF were the dominant PAH species (representing approximately 78.01% of total PAHs). The four rings PAHs were dominant (58%) among the total PAH concentrations in PM2.5. The results demonstrated that diesel and gasoline vehicles exhaust emissions contributed 56.81% and 22.60% to the PAHs, respectively, while the corresponding value for together brakes, tyre wear, and road dust was 20.59%. The emission factors of total PAHs were 29.35 μg·veh-1·km-1, and emission factors of 4 rings PAHs were significantly higher than those of the other PAHs. The sum of ILCR was estimated to be 1.41×10-4, which accorded with acceptable level of cancer risk (10-6-10-4), PAHs should not ignored as they still affect the public health of inhabitants. This study shed light on PAH profiles and traffic-related sources in the tunnel, thereby facilitating the assessment of control measures targeting PAHs in local areas.
Collapse
Affiliation(s)
- Jiayao Liu
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| | - Shunxi Deng
- School of Water and Environment, Chang'an University, Xi'an, 710064, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China.
| | - Hui Tong
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300072, China
| | - Yan Yang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Abula Tuheti
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| |
Collapse
|
4
|
Kong J, Cao X, Huang W, Li C, Xian Q, Yang S, Li S, Sun C, He H. Predicting the bioavailability of nitro polycyclic aromatic hydrocarbons in sediments: ZIF-8/h-BN solid-phase microextraction versus Tenax extraction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120896. [PMID: 36535426 DOI: 10.1016/j.envpol.2022.120896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The occurrence of nitrated polycyclic aromatic hydrocarbons (NPAHs) in sediments has been widely reported, but research on NPAH bioavailability is lacking. In this study, a self-made zeolite imidazolate framework-8/hexagonal boron nitride (ZIF-8/h-BN) solid-phase microextraction (SPME) fiber and commercial Tenax are compared as efficient tools to predict the bioavailability of NPAHs in sediments with bioassays using Cipangopaludina chinensis. During the process of SPME, the NPAH concentrations on the ZIF-8/h-BN fibers reached extraction equilibrium after 72 h. The fiber extraction of NPAHs in sediments was well-fitted by the pseudo first-order kinetic model with a rate constant of 2 × 10-2 h-1 (R2 > 0.98). The extraction rates ranking of NPAHs in sediments was 2-nitrobiphenyl>1-nitropyrene>5-nitroacenaphthene>2-nitrofluorene. Compared with SPME, NPAH concentrations reached equilibrium after 168 h for the Tenax extraction. The orders of magnitude of fast, slow, and very slow desorption rate constants were 10-1, 10-2, and 10-4, respectively. At extraction equilibrium (168 h), the SPME was close to the bioavailability of the NPAHs in sediments to Cipangopaludina chinensis with a slope statistically approximated to one. In addition, the linear regression for SPME (R2 = 0.7285) was slightly higher than that of the Tenax extraction (R2 = 0.7168) over a short time (6 h). This could be because the coating material of ZIF-8/h-BN can rapidly adsorb freely dissolved NPAHs, and the SPME fibers can accurately predict the bioaccumulated concentrations of NPAHs in exposed organisms by measuring the concentration of NPAHs in the pore water of sediment. This study provides a time-saving and easy procedure to predict the bioavailability of NPAHs in sediments.
Collapse
Affiliation(s)
- Jijie Kong
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China; School of Geography, Nanjing Normal University, Nanjing, 210023, PR China; The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xiaoyu Cao
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China
| | - Wen Huang
- Kaver Scientific Instruments, Co., Ltd, Nanjing, 210000, PR China
| | - Chao Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China; School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Qiming Xian
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China
| | - Cheng Sun
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, PR China.
| |
Collapse
|
5
|
Teixeira M, Cesar R, Abessa D, Siqueira C, Lourenço R, Vezzone M, Fernandes Y, Koifman G, Perina FC, Meigikos Dos Anjos R, Polivanov H, Castilhos Z. Ecological risk assessment of metal and hydrocarbon pollution in sediments from an urban tropical estuary: Tijuca lagoon (Rio de Janeiro, Brazil). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:184-200. [PMID: 35896874 DOI: 10.1007/s11356-022-22214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Urban tropical lagoons are often impacted by eutrophication, metal, and polycyclic aromatic hydrocarbon (PAH) contamination, but the toxicity of their bottom sediments is still poorly investigated in South America. Aiming to contribute to filling this gap, a sediment quality assessment was conducted in the Tijuca Lagoon (Rio de Janeiro, Brazil) using different lines of evidence (LOEs) including sediment characterization, determination of metals and PAHs, and acute toxicity testing with burrowing amphipods (Tiburonella viscana). Mud and organic matter contents played a crucial role in contaminant distribution along the lagoon. The concentrations of PAH were generally low (mean ΣPAH = 795.42 ± 1146.2 ng/g; n = 23), but a contamination hotspot of light PAH compounds was identified. Such PAHs were mainly pyrolytic, probably related to the deposition of atmospheric pollution, although petrogenic compounds also occur in the lagoon. The data indicated the occurrence of geochemical anomalies of Zn, Cu, Pb, and Hg (mean values = 176.9 ± 91.6, 45.1 ± 21.3, 35.2 ± 15.0, 0.1442 ± 0.0893 mg/kg, respectively; n = 23), probably associated with industrial wastes, garbage deposition, urban runoff, and domestic sewage contributions. The mortality of T. viscana was significant for more than 85% of the samples (mean mortality = 70.3 ± 26.0%; n = 23), but it was not significantly correlated with PAH and metal concentrations. On the other side, domestic sewage contributions and eutrophication seem to play a relevant role in sediment toxicity. Actually, the toxicity observed in the tests seems to be due to the simultaneous influence of multiple toxicants and their combined effects on the organisms. Such stressors may include not only metals, PAH, and eutrophication but also chemicals not evaluated in this study, such as hormones, pharmaceuticals and personal care compounds, perfluorocompounds, detergents, and others.
Collapse
Affiliation(s)
- Matheus Teixeira
- Department of Geology, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Ricardo Cesar
- Department of Geology, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Denis Abessa
- São Paulo State University, UNESP, São Vicente, SP, Brazil
| | - Celeste Siqueira
- Department of Analytical Chemistry, Chemistry Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 179 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Lourenço
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Mariana Vezzone
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, UA, Portugal
| | - Yan Fernandes
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Gustavo Koifman
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Fernando Cesar Perina
- São Paulo State University, UNESP, São Vicente, SP, Brazil
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, UA, Portugal
| | - Roberto Meigikos Dos Anjos
- Physics Institute, Federal Fluminense University, UFF, Av. Litorânea, s/n - Praia Vermelha, Niterói, RJ, Brazil
| | - Helena Polivanov
- Department of Geology, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Zuleica Castilhos
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Bahia PVB, Nascimento MM, Andrade JB, Machado ME. Microscale solid-liquid extraction: A green alternative for determination of n-alkanes in sediments. J Chromatogr A 2022; 1685:463635. [DOI: 10.1016/j.chroma.2022.463635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/09/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
7
|
Qiao M, Qi W, Liu H, Qu J. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: Occurrence, ecotoxicity, and sources. ENVIRONMENT INTERNATIONAL 2022; 163:107232. [PMID: 35427839 DOI: 10.1016/j.envint.2022.107232] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) have been ubiquitously detected in atmospheric, soil, sediment, and water environments, some of which show higher concentrations and toxicities than the parent polycyclic aromatic hydrocarbons (PAHs). The occurrence, source, fate, risks and methods of analysis for OPAHs in the atmosphere, soil, and the whole environment (comprising the atmosphere, soil, water, and biota) have been reviewed, but reviews focusing on OPAHs in the water environment have been lacking. Due to the higher polarity and water solubility of OPAHs than PAHs, OPAHs exist preferentially in water environments. In this review, the occurrence, ecological toxicity and source of OPAHs in surface water environments are investigated in detail. Most OPAHs show higher concentrations than the corresponding PAHs in surface water environments. OPAHs pose non-ignorable ecological risks to surface water ecosystems. Wastewater treatment plant effluent, atmospheric deposition, surface runoff, photochemical and microbiological transformation, and sediment release are possible sources for OPAHs in surface water. This review will fill important knowledge gaps on the migration and transformation of typical OPAHs in multiple media and their environmental impact on surface water environments. Further studies on OPAHs in the surface environment, including their ecotoxicity with the co-existing PAHs and mass flows of OPAHs from atmospheric deposition, surface runoff, transformation from PAHs, and sediment release, are also encouraged.
Collapse
Affiliation(s)
- Meng Qiao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Determination of 3-nitrobenzanthrone, its metabolites, and 41 polycyclic aromatic compounds (16 PAHs, 19 nitro-PAHs, and 6 oxy-PAHs) in ascidians (Phallusia nigra). Microchem J 2022. [DOI: 10.1016/j.microc.2021.107081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Machado ME, Nascimento MM, Bomfim Bahia PV, Martinez ST, Bittencourt de Andrade J. Analytical advances and challenges for the determination of heterocyclic aromatic compounds (NSO-HET) in sediment: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Sola MCR, Santos AG, Nascimento MM, da Rocha GO, de Andrade JB. Occurrence, sources, and risk assessment of unconventional polycyclic aromatic compounds in marine sediments from sandy beach intertidal zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152019. [PMID: 34856251 DOI: 10.1016/j.scitotenv.2021.152019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the concentrations of polycyclic aromatic compounds (PACs), including parent polyaromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives, in 48 sediment samples from the intertidal region of sandy beaches in Baía de Todos os Santos (BTS), Salvador, State of Bahia, Brazil. The total PAH (∑PAH) concentration, total nitro-PAH (∑nitro-PAH) concentration, and total oxy-PAH (∑oxy-PAH) concentration ranged from 2.11 μg g-1 dry weight (dw) to 28.0 μg g-1 dw, 2.58 μg g-1 dw to 30.2 μg g-1 dw, and 0.34 μg g-1 dw to 3.65 μg g-1 dw, respectively. Elevated concentrations of parent PAHs and nitro-PAHs were found in samples from two sites in BTS, which were also characterized by high percentages of fine-medium sand and low organic matter contents. Potent mutagenic 3-nitrobenzanthrone (3-NBA) was found in 86% of the samples at concentrations ranging from 0.200 μg g-1 dw to 0.690 μg g-1 dw. Furthermore, calculations of the benzo[a]pyrene toxicity equivalency (BaPTEQ) indicated that three carcinogenic high-molecular-weight PAHs accounted for 98.7% of the total maximum PAH concentration. Finally, we assessed the possible environmental risks posed to benthic species living in the sediments of BTS. The results showed that the risk quotient for PAHs (RQPAHs) was ≥1. In turn, the summed RQ for all PACs (∑RQmixture) ranged from 1 to 30, but did not exceed the maximum allowable threshold; thus, the risks posed to benthic species were moderate for all sediment samples.
Collapse
Affiliation(s)
- Maria Claudia R Sola
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, UFBA, 40170-290 Salvador, BA, Brazil
| | - Aldenor G Santos
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, UFBA, 40170-290 Salvador, BA, Brazil; Universidade Federal da Bahia, Instituto de Química, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| | - Madson M Nascimento
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, UFBA, 40170-290 Salvador, BA, Brazil; Universidade Federal da Bahia, Instituto de Química, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| | - Gisele Olimpio da Rocha
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, UFBA, 40170-290 Salvador, BA, Brazil; Universidade Federal da Bahia, Instituto de Química, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| | - Jailson Bittencourt de Andrade
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, UFBA, 40170-290 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, Av. Orlando Gomes, 1845 - Piatã, 41650-010 Salvador, BA, Brazil.
| |
Collapse
|
11
|
Ling C, Shi Q, Wei Z, Zhang J, Hu J, Pei J. Rapid analysis of quinones in complex matrices by derivatization-based wooden-tip electrospray ionization mass spectrometry. Talanta 2022; 237:122912. [PMID: 34736649 DOI: 10.1016/j.talanta.2021.122912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Quinones are important components participating in various biological processes as well as hazardous substances to human health. Rapid determination of quinones in environmental samples and biofluids is the basis for assessing their health effect. Here, we presented a rapid, straightforward, highly sensitive and environmental-friendly wooden-tip electrospray ionization mass spectrometry (ESI-MS) method for the determination of quinones in PM2.5, urine and serum. An amine group "tag" was introduced to the quinone structure through in situ derivatization with cysteamine to improve ionization efficiency of quinones in wooden-tip ESI-MS. The toothpicks were treated by sharpening and acidification with HNO3. Experimental parameters, including sample volume, spray voltage, and spray solvent composition were optimized to be 1 μL, 3.5 kV, and ACN/CH3COOC2H5 (v/v, 9:1), respectively. The limits of detection for the determination of 1,4-benzoquinone, methyl-p-benzoquinone, 1,4-naphthoquinone and 1,4-anthraquinone in ACN under the optimal conditions were 1.00, 0.96, 0.13, 0.16 ng (1.00, 0.96, 0.13, 0.16 μg/mL, sample volume, 1 μL), respectively. This approach was successfully applied to the determination of 1,4-naphthoquinone and 1,4-anthraquinone in complex matrices, including PM2.5, urine and serum without or with minimal sample preparation (LOD range: 0.22-1.48 ng).
Collapse
Affiliation(s)
- Chen Ling
- School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, PR China
| | - Qiaofang Shi
- School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, PR China
| | - Zhanpeng Wei
- School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, PR China
| | - Jingjing Zhang
- School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, PR China
| | - Junjie Hu
- School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, PR China
| | - Jiying Pei
- School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, PR China; Coral Reef Research Center of China, Nanning, Guangxi, 530000, PR China.
| |
Collapse
|
12
|
Kong J, Gao Z, Hu G, Huang W, Zhou S, He H, Xian Q, Sun C. Solid-phase microextraction combined with gas chromatography/triple quadrupole tandem mass spectrometry for determination of nitrated polycyclic aromatic hydrocarbons in sediments. J Sep Sci 2022; 45:1094-1105. [PMID: 34981623 DOI: 10.1002/jssc.202100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 11/10/2022]
Abstract
Nitro-polycyclic aromatic hydrocarbons have been detected in various environmental media. However, determination in sediment matrix is challenging due to the lack of a suitable method. In this study, a reliable method for determining 15 nitro-polycyclic aromatic hydrocarbons in sediments was developed based on accelerated solvent extraction and solid-phase microextraction coupled with gas chromatography-tandem mass spectrometry. The accelerated solvent extraction and solid-phase microextraction are sample pre-treatment techniques that have advantages, such as rapid operation and minimal sample volume. Initially, the solid-phase microextraction was optimized using five commercial fibers and from that 65 μm polydimethylsiloxane/divinylbenzene fiber was selected as the best fiber. Further, the accelerated solvent extraction conditions were optimized by Taguchi experimental design, such as extraction temperature (120℃), extraction solvent (dichloromethane), number of cycles (two), static extraction period (4 min), and rinse volume (90%). The method parameters, such as limits of quantitation, and intraday and interday accuracy and precision, were in the range of 0.067-1.57 ng/g, 75.2-115.2%, 69.9-115.4%, and 1.0-16.5%, respectively. Upon meeting all the quality criteria, the method was applied successfully to analyze real sediment samples. Therefore, our study creates a new prospect for the future application of direct immersion solid-phase microextraction in sediment analysis.
Collapse
Affiliation(s)
- Jijie Kong
- School of Environment, Nanjing Normal University, Nanjing, P. R. China.,School of Geography, Nanjing Normal University, Nanjing, P. R. China.,The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China
| | - Zhaoqi Gao
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Environment Monitoring Center of Jiangsu Province, Nanjing, P. R. China
| | - Guanjiu Hu
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Environment Monitoring Center of Jiangsu Province, Nanjing, P. R. China
| | - Wen Huang
- Kaver Scientific Instruments, Co., Ltd, Nanjing, P. R. China
| | - Shaoda Zhou
- Kaver Scientific Instruments, Co., Ltd, Nanjing, P. R. China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, P. R. China
| | - Qiming Xian
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China
| | - Cheng Sun
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China
| |
Collapse
|
13
|
Bahia PVB, Nascimento MM, Hatje V, de Andrade JB, Machado ME. Microscale extraction combined with gas chromatography/mass spectrometry for the simultaneous determination of polycyclic aromatic hydrocarbons and polycyclic aromatic sulfur heterocycles in marine sediments. J Chromatogr A 2021; 1653:462414. [PMID: 34320434 DOI: 10.1016/j.chroma.2021.462414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/15/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
This paper describes a novel method based on an ultrasound-assisted extraction microscale device (UAE-MSD) for the rapid and simultaneous determination of polycyclic aromatic hydrocarbons (PAH) and polycyclic aromatic sulfur heterocycles (PASH) in marine sediments. Solvent extraction conditions were optimized by applying a simplex-centroid mixture design. Optimum conditions were used to validate and determine the concentrations of 17 PAH and 7 PASH. The best conditions were obtained by extracting sediments with 500 µL of DCM:MeOH (65:35, v:v) over 23 min of sonication. Analytes were determined by gas chromatography/mass spectrometry in selective ion monitoring (GC-MS/SIM). Matrix effects were evaluated, and matrix-matched calibration was used for quantitation. Analytical method validation was carried out using the certified reference material NIST SRM 1941b, as well as sediment spiked with PASH at three concentration levels. Recoveries ranged between 70.0 ± 3.5% and 119 ± 9.1% for PAH and 80.6 ± 10.4% and 120 ± 10% for PASH. Linearity (R2) was ≥0.99 for all compounds. Method detection limits ranged from 8.8 to 30.2 ng g-1, while limits of quantification ranged from 29.4 to 1011 ng g-1. UAE-MSD was applied to marine sediments exposed to different anthropogenic impacts collected in Todos os Santos Bay, Brazil. PAH concentrations ranged from <LOQ to 667 ng g-1, while PASH levels were <LOQ to 1152 ng g-1. Dibenzothiophene was the compound presented in the highest concentration in all samples, with values up to 249 ng g-1. The results indicated contributions of pyrogenic sources from all compounds. The developed method can potentially be applied to extract trace levels of compounds in different solid matrices to minimize extraction time and solvent consumption.
Collapse
Affiliation(s)
- Pedro Victor Bomfim Bahia
- Instituto de Química, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - Madson Moreira Nascimento
- Instituto de Química, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - Vanessa Hatje
- Instituto de Química, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - Jailson Bittencourt de Andrade
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Centro Universitário SENAI-CIMATEC, Av. Orlando Gomes, 1845 - Piatã, Salvador, BA 41650-010, Brazil
| | - Maria Elisabete Machado
- Instituto de Química, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil.
| |
Collapse
|
14
|
Mohammed R, Zhang ZF, Jiang C, Hu YH, Liu LY, Ma WL, Song WW, Nikolaev A, Kallenborn R, Li YF. Occurrence, Removal, and Mass Balance of Polycyclic Aromatic Hydrocarbons and Their Derivatives in Wastewater Treatment Plants in Northeast China. TOXICS 2021; 9:toxics9040076. [PMID: 33918398 PMCID: PMC8066243 DOI: 10.3390/toxics9040076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), 33 methylated PAHs (Me-PAHs), and 14 nitrated PAHs (NPAHs) were measured in wastewater treatment plants (WWTPs) to study the removal efficiency of these compounds through the WWTPs, as well as their source appointment and potential risk in the effluent. The concentrations of ∑PAHs, ∑Me-PAHs, and ∑NPAHs were 2.01–8.91, 23.0–102, and 6.21–171 µg/L in the influent, and 0.17–1.37, 0.06–0.41 and 0.01–2.41 µg/L in the effluent, respectively. Simple Treat 4.0 and meta-regression methods were applied to calculate the removal efficiencies (REs) for the 63 PAHs and their derivatives in 10 WWTPs and the results were compared with the monitoring data. Overall, the ranges of REs were 55.3–95.4% predicated by the Simple Treat and 47.5–97.7% by the meta-regression. The results by diagnostic ratios and principal component analysis PCA showed that “mixed source” biomass, coal composition, and petroleum could be recognized to either petrogenic or pyrogenic sources. The risk assessment of the effluent was also evaluated, indicating that seven carcinogenic PAHs, Benzo[a]pyrene, Dibenz[a,h]anthracene, and Benzo(a)anthracene were major contributors to the toxics equivalency concentrations (TEQs) in the effluent of WWTPs, to which attention should be paid.
Collapse
Affiliation(s)
- Rashid Mohammed
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
- Correspondence: or (Z.-F.Z.); or (Y.-F.L.); Tel.: +86-451-8628-9130 (Z.-F.Z.)
| | - Chao Jiang
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases, Harbin 150028, China; (C.J.); (Y.-H.H.)
| | - Ying-Hua Hu
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases, Harbin 150028, China; (C.J.); (Y.-H.H.)
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Anatoly Nikolaev
- Institute of Natural Sciences, North-Eastern Federal University, 677000 Yakutsk, Russia;
| | - Roland Kallenborn
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
- Faculty of Chemistry, Biotechnology & Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
- IJRC-PTS-NA, Toronto, ON M2N 6X9, Canada
- Correspondence: or (Z.-F.Z.); or (Y.-F.L.); Tel.: +86-451-8628-9130 (Z.-F.Z.)
| |
Collapse
|
15
|
Nunes BZ, Zanardi-Lamardo E, Choueri RB, Castro ÍB. Marine protected areas in Latin America and Caribbean threatened by polycyclic aromatic hydrocarbons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116194. [PMID: 33288292 DOI: 10.1016/j.envpol.2020.116194] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The present study is a literature-based analysis investigating occurrence and the possible consequences of polycyclic aromatic hydrocarbons (PAH) in marine protected areas (MPAs) of Latin America and Caribbean. The approach using overlapping of georeferenced MPA polygons with data compiled from peer-reviewed literature, published during the last 15 years, showed 341 records of PAH in 9 countries. PAH was reported to occur within the boundaries of 36 MPAs located in Argentina, Brazil, Colombia, Mexico, Nicaragua and Uruguay. According to quality guidelines, low to moderate impacts are expected in MPAs categorized in different management classes. Considering sediment samples, 13% of the records presented concentrations enough to cause occasional toxicity. Such level of risk was also seen in Ramsar sites and in Amazonian MPAs. In addition, based on concentrations reported in biota, occasional deleterious effects on organisms from Biosphere Reserves might occur. Diagnostic ratios pointed out petrogenic and pyrolytic processes as PAH predominant sources, and were mainly attributed to the proximity to ports, industries and urban areas. MPAs located in the vicinity of impact-generating areas may be under threat and require government attention and action, mainly through implementation of contamination monitoring programs.
Collapse
Affiliation(s)
- Beatriz Zachello Nunes
- Instituto Do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Santos, SP, Brazil; Instituto de Oceanografia, Universidade Federal Do Rio Grande (IO-FURG), Rio Grande, RS, Brazil
| | - Eliete Zanardi-Lamardo
- Departamento de Oceanografia, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Ítalo Braga Castro
- Instituto Do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Santos, SP, Brazil; Instituto de Oceanografia, Universidade Federal Do Rio Grande (IO-FURG), Rio Grande, RS, Brazil.
| |
Collapse
|
16
|
Sun C, Qu L, Wu L, Wu X, Sun R, Li Y. Advances in analysis of nitrated polycyclic aromatic hydrocarbons in various matrices. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Parra YJ, Oloyede OO, Pereira GM, de Almeida Lima PHA, da Silva Caumo SE, Morenikeji OA, de Castro Vasconcellos P. Polycyclic aromatic hydrocarbons in soils and sediments in Southwest Nigeria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113732. [PMID: 31884216 DOI: 10.1016/j.envpol.2019.113732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/06/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic Aromatic Hydrocarbons are strongly associated with agricultural, residential, transportation, and industrial activities. This study determined by GC-MS the concentration of 15 PAHs in soil and sediments at different sites from the Awotan-Asunle dumpsite area in the Southwestern region of Nigeria, which is one of the largest dumpsites in Africa. The sources of contamination, toxicity and associated risks for human health were also evaluated. Total PAHs concentrations were from 489 to 5616 μg kg-1, and 642-2159 μg kg-1, for soil and sediment, respectively. For soils, the highest values were observed for indeno[1,2,3-c,d]pyrene, coronene, and phenanthrene, while for sediments, the most abundant species were pyrene, fluoranthene and phenanthrene. Diagnostic ratios were used to determine the sources of PAHs and suggested that the compounds were mainly emitted from non-traffic sources. The total BaP-TEQ and BaP-MEQ for soils did not exceed the value recommended by the Canadian guideline since the country does not present guidelines. The analysis of incremental lifetime cancer risk was high mostly for dermal and ingestion exposures in the population. This study might provide valuable information regarding exposure to PAHs in soils of a Nigerian community.
Collapse
Affiliation(s)
- Yendry Jomolca Parra
- Institute of Chemistry, University of São Paulo, Av. Lineu Prestes, 74, São Paulo 05508-000, Brazil.
| | | | | | | | | | | | | |
Collapse
|
18
|
Simple and effective dispersive micro-solid phase extraction procedure for simultaneous determination of polycyclic aromatic compounds in fresh and marine waters. Talanta 2019; 204:776-791. [DOI: 10.1016/j.talanta.2019.06.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 11/20/2022]
|