1
|
Okeke ES, Nwankwo CEI, Owonikoko WM, Emencheta SC, Ozochi CA, Nweze EJ, Okeke VC, Nwuche CO, Enochoghene AE. Mercury's poisonous pulse: Blazing a new path for aquatic conservation with eco-friendly mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177719. [PMID: 39631341 DOI: 10.1016/j.scitotenv.2024.177719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Many compounds and inorganic elements released from natural and anthropogenic origins contaminate the environment and are implicated in catastrophes involving most biologically driven ecological processes and public health. One such element is Mercury. Mercury exists in both inorganic elemental form and the more metabolically active molecular form e.g. methyl mercury. They enjoy wide applications in medicine and form key components of numerous electrical and electronic devices. Unfortunately, severe health and adverse physiological conditions have developed from the impacts of mercury on the flora and fauna of both aquatic and terrestrial organisms. Despite being present in tiny amounts in water bodies, mercury undergoes a process of trophic amplification where its concentration increases significantly as it moves up the food chain through processes like biomethylation, bioaccumulation, and biomagnification. Most current methods for removing mercury through physical and chemical means have significant drawbacks, including high costs, complex technical requirements, and harmful secondary effects on the environment. Therefore, only environmentally friendly and sustainable approaches are acceptable to mitigate the risks to public health and ecosystem damage. Bioremediation involves the use of biological systems, i.e., plants and microbes, to recover mercury from the environment. The application of microorganisms in remediation is the hallmark of all mitigation strategies targeted at mercury pollution in the soil and aquatic matrices. The present paper provides a comprehensive overview of the current knowledge on mercury pollution in the environment (i.e., atmosphere, soil, water, and sediments). Many symptoms of mercury poisoning in fish, birds, and other animals, including man, were extensively treated. Information on the existing physico-chemical treatment methods, as well as the more ecologically friendly bioremediation measures available, was summarized. The importance of strengthening existing international policies, commitments, protocols, and alignments on the control of anthropogenic generation, treatment, and reduction of mercury discharges to the environment was highlighted.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu, China
| | - Chidiebele Emmanuel Ikechukwu Nwankwo
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu, China; Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Wasiu Mathew Owonikoko
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Nigeria
| | - Stephen Chijioke Emencheta
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; VBLab - Laboratory of Bacterial Viruses, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Chizoba Anthonia Ozochi
- Department of Science Laboratory Technology, Federal Polytechnic, Ohodo 411103, PMB 01801, Enugu, Enugu State, Nigeria
| | - Ekene John Nweze
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria.
| | - Veronica Chisom Okeke
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria
| | - Charles Ogugua Nwuche
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria.
| | - Adebisi Esther Enochoghene
- Environmental Management and Toxicology Unit, Department of Biological Sciences, Lead City University, Ibadan, Nigeria.
| |
Collapse
|
2
|
Jeong H, Ali W, Zinck P, Souissi S, Lee JS. Toxicity of methylmercury in aquatic organisms and interaction with environmental factors and coexisting pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173574. [PMID: 38823721 DOI: 10.1016/j.scitotenv.2024.173574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Mercury is a hazardous heavy metal that is distributed worldwide in aquatic ecosystems. Methylmercury (MeHg) poses significant toxicity risks to aquatic organisms, primarily through bioaccumulation and biomagnification, due to its strong affinity for protein thiol groups, which results in negative effects even at low concentrations. MeHg exposure can cause various physiological changes, oxidative stress, neurotoxicity, metabolic disorders, genetic damage, and immunotoxicity. To assess the risks of MeHg contamination in actual aquatic ecosystems, it is important to understand how MeHg interacts with environmental factors such as temperature, pH, dissolved organic matter, salinity, and other pollutants such as microplastics and organic compounds. Complex environmental conditions can cause potential toxicity, such as synergistic, antagonistic, and unchanged effects, of MeHg in aquatic organisms. This review focuses on demonstrating the toxic effects of single MeHg exposure and the interactive relationships between MeHg and surrounding environmental factors or pollutants on aquatic organisms. Our review also recommends further research on biological and molecular responses in aquatic organisms to better understand the potential toxicity of combinational exposure.
Collapse
Affiliation(s)
- Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Wajid Ali
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Operation Center for Enterprise Academia Networking, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Ignacio S, Schlotthauer J, Sigrist M, Volpedo AV, Thompson GA. Potentially toxic trace elements in the muscle of coastal South American fish: Implications for human consumption and health risk assessment. MARINE POLLUTION BULLETIN 2024; 202:116384. [PMID: 38643585 DOI: 10.1016/j.marpolbul.2024.116384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/23/2024]
Abstract
Micropogonias furnieri and Urophycis brasiliensis are two coastal demersal fish species distributed in the southwestern Atlantic Ocean. Considering that many coastal areas in the southwestern Atlantic Ocean suffer from anthropogenic pressure, the aim of this study was to assess the level of potentially toxic trace elements (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, Sr, V and Zn) in the muscle of coastal species, and evaluated the human health risk related to the consumption of muscle. Mercury, inorganic As (Asi), V, and Se showed a higher contribution to the total THQ. Considering two possible scenarios, Asi represents 1 % or 5 % of the total As, the total THQ was <1 for general population and of some health concerns for fishermen population (Total THQ > 1; 5 % Asi). Consequently these results show the importance of quantifying As species in muscle to generate more reliable risk estimates for human health.
Collapse
Affiliation(s)
- Sabrina Ignacio
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Buenos Aires, Argentina
| | - Jonatan Schlotthauer
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos -PRINARC- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000 Santa Fe, Argentina
| | - Mirna Sigrist
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos -PRINARC- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000 Santa Fe, Argentina
| | - Alejandra V Volpedo
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Buenos Aires, Argentina
| | - Gustavo A Thompson
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina.
| |
Collapse
|
4
|
La Colla NS, Salvador P, Botté SE, Artíñano B. Air quality and characterization of synoptic circulation weather patterns in a South American city from Argentina. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119722. [PMID: 38061092 DOI: 10.1016/j.jenvman.2023.119722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 01/14/2024]
Abstract
The potential cause-effect relationship between synoptic meteorological conditions and levels of criteria air pollutants, including CO, NO2, O3, PM10, PM2.5 and SO2, in Bahia Blanca, Argentina, was assessed for the period of 2018-2019. Daily back-trajectories and global meteorological data fields were employed to characterize the primary transport paths of air masses reaching the study site, and to identify the synoptic meteorological patterns responsible for these atmospheric circulations. Time series of surface-level meteorological parameters and midday mixing layer height were collected to examine the impact of the synoptic meteorological patterns on local meteorology. Furthermore, the NAAPS global aerosol model was utilized to identify days when contributions from long-range transport processes, such as dust and/or biomass burning smoke, impacted air quality. By applying this methodology, it was determined that the air masses coming from the N, NW and W regions significantly contributed to increased mean concentrations of coarse particles in this area through long-range transport events involving dust and smoke. Indeed, the high average levels of PM10 recorded in 2018-2019 (annual mean values of 47 and 52 μg/m3, respectively) represent the main air quality concern in Bahía Blanca. Moreover, PM10, PM2.5 and NO2 emissions should be reduced in order to meet recommended air quality guidelines. On the other hand, the results from this study suggest that the sources and meteorological processes leading to the increase in the concentrations of CO and SO2 have a local-regional origin, although these air pollutants did not reach high values probably as a consequence of the strong wind speed registered in this region during any synoptic meteorological pattern.
Collapse
Affiliation(s)
- Noelia S La Colla
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, 8000, Argentina.
| | - Pedro Salvador
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain
| | - Sandra E Botté
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, 8000, Argentina
| | - Begoña Artíñano
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain
| |
Collapse
|
5
|
Denaro G, Curcio L, Borri A, D'Orsi L, De Gaetano A. A dynamic integrated model for mercury bioaccumulation in marine organisms. ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Viana T, Almeida R, Figueira P, Rocha L, Neves MC, Freitas R, Freire M, Henriques B, Pereira E. Removal of mercury by silica-supported ionic liquids: Efficiency and ecotoxicological assessment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106611. [PMID: 37336029 DOI: 10.1016/j.aquatox.2023.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Anthropogenic impacts have affected the coastal environment and contributed to its contamination. Mercury (Hg) is widespread in nature and has been shown to be toxic in even the smallest amounts, negatively affecting not only the marine ecosystem but also the entire trophic chain due to its biomagnification. Mercury ranks third on the Agency for Toxic Substances and Diseases Registry (ATSDR) priority list and it is therefore imperative to develop more effective methods than those currently available to avoid the persistence of this contaminant in aquatic ecosystems. The present study aimed to evaluate the effectiveness of six different silica-supported ionic liquids (SIL) in removing Hg from contaminated saline water, under realistic conditions ([Hg] = 50 µg/L), and to ecotoxicologically evaluate the safety of the SIL-remedied water, using as test model the marine macroalga Ulva lactuca. The results revealed that SIL [Si][C3C1im][SCN] (250 mg/L) was the most effective in removing Hg from solution, with a efficiency up to 99 % in just 6 h, that enable to obtain < 1 µg/L Hg (European guideline in drinking water). U. lactuca exposed to either the SIL and/or the remedied water showed no significant changes in relative growth rate and chlorophyll a and b levels, compared to the control condition. Biomarker analysis (LPO, GSH, GSSG, SOD, GPx, CAT and GRed) also showed no significant changes in the biochemical performance of U. lactuca. Therefore, it could be assumed that water treatment with SIL or its presence in an aqueous environment does not pose toxicity levels that could inhibit the metabolism or cause cell damage to U. lactuca.
Collapse
Affiliation(s)
- Thainara Viana
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Raquel Almeida
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Paula Figueira
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, Aveiro, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208, Matosinhos, Portugal
| | - Luciana Rocha
- CICECO, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Márcia C Neves
- CICECO, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rosa Freitas
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara Freire
- CICECO, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bruno Henriques
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Eduarda Pereira
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
La Colla NS, Botté SE, Ronda AC, Menendez MC, Arias AH, Vitale AJ, Piccolo MC. Insights on metal pollution of a Patagonia watershed: A case study in the lower course of the Negro river, Argentina. CHEMOSPHERE 2023; 323:138234. [PMID: 36842557 DOI: 10.1016/j.chemosphere.2023.138234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated the occurrence and distribution of largely known pollutants (Ag, Cd, Cu, Cr, Hg, Ni, Pb, Pd, and Zn), as well as emerging ones (Li, and V) in the water dissolved fraction, suspended particulate matter, and surface sediments from the lower course of the Negro River, Argentina. There are scarce preceding data on inorganic pollution in the entire watershed and, in the case of the emerging pollutants, there are almost no studies performed worldwide. Sampling was conducted in 2019 at six sampling sites, three of them mostly river dominated and the rest under marine domain. The samples were subjected to an acid digestion in a microwave digester, and analyzed using an Inductively Coupled Plasma Atomic Emission Spectrometer. Results: revealed that Cu, Li, V, and Zn were always on the top four of the highest average metal concentrations in water and sediment fractions. The pollution assessment indicated that the watershed might be exposed to anthropogenic pollution, as over 60% of Cu and Zn, and over 85% of Hg in water dissolved samples from the marine dominated sites were above the maximum recommended values from guidelines. The multivariate analyses characterized the watershed into two clusters, with metals in the sediment fraction mainly contributing to the uppermost sites. Indeed, sedimentary Cu and Zn background enrichment indices pointed out a moderate pollution of the river dominated sites. This study highlights the relevance of an integrative approach in metal pollution evaluation, as the results denoted a progressive deterioration of the watershed, affecting the water quality of the lower course of the Negro River and its adjacent coastal zone. Overall, these results contribute to a more complete evaluation of the potential to fulfill the Sustainable Development Goals, with implications for future treatment strategies to enhance the environmental quality of the area.
Collapse
Affiliation(s)
- Noelia S La Colla
- Instituto Argentino de Oceanografía (IADO/CONICET/UNS), Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina.
| | - Sandra E Botté
- Instituto Argentino de Oceanografía (IADO/CONICET/UNS), Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina
| | - Ana C Ronda
- Instituto Argentino de Oceanografía (IADO/CONICET/UNS), Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina
| | - María C Menendez
- Instituto Argentino de Oceanografía (IADO/CONICET/UNS), Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina
| | - Andrés H Arias
- Instituto Argentino de Oceanografía (IADO/CONICET/UNS), Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina; Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina
| | - Alejandro J Vitale
- Instituto Argentino de Oceanografía (IADO/CONICET/UNS), Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina; Departamento de Geografía y Turismo, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina; Departamento de Ingeniería Eléctrica y de Computadoras, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina
| | - María C Piccolo
- Instituto Argentino de Oceanografía (IADO/CONICET/UNS), Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina; Departamento de Geografía y Turismo, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina
| |
Collapse
|
8
|
Oliva AL, Girones L, Recabarren-Villalón TV, Ronda AC, Marcovecchio JE, Arias AH. Occurrence, behavior and the associated health risk of organochlorine pesticides in sediments and fish from Bahía Blanca Estuary, Argentina. MARINE POLLUTION BULLETIN 2022; 185:114247. [PMID: 36274559 DOI: 10.1016/j.marpolbul.2022.114247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Organochlorine pesticides (OCPs) were assessed for their occurrence, behavior and the associated human health and ecological risks in four fish species (Micropogonias furnieri, Cynoscion guatucupa, Mustelus schmitti, and Ramnogaster arcuata) and sediments from the Bahía Blanca estuary, Argentina, an important coastal environment of South America. Total OCPs values ranged from 0.86 to 6.23 ng/g dry weight in sediments and from <LOD (method detection limits) to 0.74 ng/g wet weight in fish. While lindane and α-endosulfan were the dominant congeners in sediments, β-endosulfan and p,p'-DDE were dominant in fish. OCP levels and residues patterns varied within the fish species and life stage. Finally, after cancer and non-cancer risk analysis, results concluded that the consumption of fish from the estuary would pose no health threats associated with these pollutants.
Collapse
Affiliation(s)
- Ana L Oliva
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, B8000FWB Bahía Blanca, Argentina.
| | - Lautaro Girones
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, B8000FWB Bahía Blanca, Argentina
| | - Tatiana V Recabarren-Villalón
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, B8000FWB Bahía Blanca, Argentina
| | - Ana C Ronda
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, B8000FWB Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av. Alem 1253, B8000DIC Bahía Blanca, Argentina
| | - Jorge E Marcovecchio
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, B8000FWB Bahía Blanca, Argentina; Universidad de la Fraternidad de Agrupaciones Santo Tomás de Aquino, Gascón 3145, 7600 Mar del Plata, Argentina; Universidad Tecnológica Nacional - FRBB, 11 de Abril 445, 8000 Bahía Blanca, Argentina; Academia Nacional de Ciencias Exactas, Físicas y Naturales (ANCEFN), Av. Alvear 1711, 1014 Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrés H Arias
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, B8000FWB Bahía Blanca, Argentina; Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, B8000DIC Bahía Blanca, Argentina
| |
Collapse
|
9
|
Mercury Induced Tissue Damage, Redox Metabolism, Ion Transport, Apoptosis, and Intestinal Microbiota Change in Red Swamp Crayfish (Procambarus clarkii): Application of Multi-Omics Analysis in Risk Assessment of Hg. Antioxidants (Basel) 2022; 11:antiox11101944. [PMID: 36290667 PMCID: PMC9598479 DOI: 10.3390/antiox11101944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/22/2022] Open
Abstract
As one of the most toxic elements, mercury (Hg) is a widespread toxicant in aquatic environments. Crayfish are considered suitable for indicating the impact of heavy metals on aquatic crustaceans. Nevertheless, Hg toxicity on Procambarus clarkii is largely unknown. In this research, the acute Hg-induced alterations of biochemical responses, histopathology, hepatopancreatic transcriptome, and intestinal microbiome of Procambarus clarkii were studied. Firstly, Hg induced significant changes in reactive oxygen species (ROS) and malonaldehyde (MDA) content as well as antioxidant enzyme activity. Secondly, Hg exposure caused structural damage to the hepatopancreas (e.g., vacuolization of the epithelium and dilatation of the lumen) as well as to the intestines (e.g., dysregulation of lamina epithelialises and extension of lamina proprias). Thirdly, after treatment with three different concentrations of Hg, RNA-seq assays of the hepatopancreas revealed a large number of differentially expressed genes (DEGs) linked to a specific function. Among the DEGs, a lot of redox metabolism- (e.g., ACOX3, SMOX, GPX3, GLO1, and P4HA1), ion transport- (e.g., MICU3, MCTP, PYX, STEAP3, and SLC30A2), drug metabolism- (e.g., HSP70, HSP90A, CYP2L1, and CYP9E2), immune response- (e.g., SMAD4, HDAC1, and DUOX), and apoptosis-related genes (e.g., CTSL, CASP7, and BIRC2) were identified, which suggests that Hg exposure may perturb the redox equilibrium, disrupt the ion homeostasis, weaken immune response and ability, and cause apoptosis. Fourthly, bacterial 16S rRNA gene sequencing showed that Hg exposure decreased bacterial diversity and dysregulated intestinal microbiome composition. At the phylum level, there was a marked decrease in Proteobacteria and an increase in Firmicutes after exposure to high levels of Hg. With regards to genus, abundances of Bacteroides, Dysgonomonas, and Arcobacter were markedly dysregulated after Hg exposures. Our findings elucidate the mechanisms involved in Hg-mediated toxicity in aquatic crustaceans at the tissue, cellular, molecular as well as microbial levels.
Collapse
|
10
|
Quadri-Adrogué A, Gómez-Ramírez P, García-Fernández AJ, García GO, Seco-Pon JP, Miglioranza KSB. Feather mercury levels in beached Magellanic penguin (Spheniscus magellanicus) in northern Argentina during the non-breeding season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24793-24801. [PMID: 34826079 DOI: 10.1007/s11356-021-17539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a great concern for marine environments. Bird feathers have been widely used to assess Hg pollution. In this study, we determine mercury concentrations in body feathers of juvenile Magellanic penguins (Spheniscus magellanicus) from the southeastern sector of Buenos Aires province, Argentina, during a non-breeding season, considering both sexes. Hg levels, considering both females and males together, ranged between 265.5 and 1515.52 ng/g. These levels are well below the concentrations in feathers suggested for taking actions focused on the protection of seabirds. Non-significant differences between sexes regarding Hg levels were found, probably because juveniles were sexually immature and females did not excrete Hg by egg laying yet. Hg concentrations found in this study were an order of magnitude higher than those reported 10 years ago for the species in breeding areas on the Argentine coast. Thus, the present study provides relevant information indicating a possible increase of Hg pollution in the southwestern region of the Atlantic Ocean and thus trigger for the development of monitoring programs and regional strategies to improve the conservation status of this species.
Collapse
Affiliation(s)
- Agustina Quadri-Adrogué
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Argentina
- Laboratorio de Vertebrados, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Argentina
| | - Pilar Gómez-Ramírez
- Toxicology and Risk Assessment Research Group, IMIB‑Arrixaca, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Antonio Juan García-Fernández
- Toxicology and Risk Assessment Research Group, IMIB‑Arrixaca, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Germán Oscar García
- Laboratorio de Vertebrados, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Argentina
- Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMDP-CONICET), Mar del Plata, Argentina
| | - Juan Pablo Seco-Pon
- Laboratorio de Vertebrados, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Argentina.
- Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMDP-CONICET), Mar del Plata, Argentina.
| | - Karina Silvia Beatriz Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Argentina
- Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMDP-CONICET), Mar del Plata, Argentina
| |
Collapse
|
11
|
da Silva Montes C, Ferreira MAP, Giarrizzo T, Amado LL, Rocha RM. The legacy of artisanal gold mining and its impact on fish health from Tapajós Amazonian region: A multi-biomarker approach. CHEMOSPHERE 2022; 287:132263. [PMID: 34826937 DOI: 10.1016/j.chemosphere.2021.132263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Tapajós Region, is an area with intense historical artisanal and small-scale gold mining. Therefore, the core objective of this study was to evaluate the environmental status of different rivers located in this region, using biomarker endpoints in Serrasalmus rhombeus as a tool. Fish and sediment were collected from two rivers, Tropas and Crepori, affluent of Tapajós River, located inside a Federal Protection Area and in a Reference site. Mercury concentration in sediment and fish were traced, and biomarkers in gills and liver were analyzed. Results showed a clear difference between these two rivers compared to the Reference site. Fish tissues presented biomarker responses according to the site of collection. Catalase (CAT) activity was statistically higher in fish gills from Crepori, confirming the capacity of mercury interference with redox equilibrium. High levels of lipid peroxidation were also noted to contribute greatly in incidence of morphological changes in the liver and gills, suggesting that mercury bioaccumulation during continuous exposure promote biological responses in a cumulative manner, from molecules to tissues. This study also indicates adaptation in fish defense mechanisms given the conditions in the Tropas River, as well as a variation in biomarker responses to that of the Crepori river. In summary, Tapajós affluents presented high mercury levels in fish tissues leading to biomarker responses, demonstrating a hazardous signal of a long history of mercury pollution.
Collapse
Affiliation(s)
- Caroline da Silva Montes
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil.
| | - Maria Auxiliadora Pantoja Ferreira
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Tommaso Giarrizzo
- Laboratory of Fisheries Biology - Aquatic Resource Management, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Lílian Lund Amado
- Laboratory of Ecotoxicology and Laboratory of Marine Environmental Monitoring Research (LAPMAR) Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Rossineide Martins Rocha
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| |
Collapse
|
12
|
La Colla NS, Botté SE, Simonetti P, Negrin VL, Serra AV, Marcovecchio JE. Water, sediments and fishes: First multi compartment assessment of metal pollution in a coastal environment from the SW Atlantic. CHEMOSPHERE 2021; 282:131131. [PMID: 34470169 DOI: 10.1016/j.chemosphere.2021.131131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
This is an integrated assessment of the distribution of Cd, Cr, Hg and Pb in dissolved water, sediments and muscle fish tissues (Cynoscion guatucupa, Micropogonias furnieri, Mustelus schmitti and Ramnogaster arcuata) from the Bahía Blanca estuary, Argentina. Within the water fraction (μg L-1), Hg and Pb concentrations ranged from below the limit of detection (<LOD) to 0.53 and 54, respectively. For Cd and Cr, values varied from 0.060 to 0.56 and from 1.6 to 18, respectively. In the sediment fraction (μg g-1) values ranged from <LOD to 0.21 and 0.47 for Cd and Hg, respectively, from 11 to 18 for Cr and from 5.1 to 10 for Pb. Metals in fish muscle tissues (μg g-1) ranged from <LOD to 2.8, 0.53 and 0.52 for Cr, Hg and Pb, respectively. All Cd values were <LOD. This marine environment is potentially vulnerable to anthropogenic pollution since dissolved Cr, Hg and Pb values exceeded established environmental quality guidelines. Moreover, the sediment pollution indices indicated a deterioration of the estuarine environment, with Cr and Pb associated to anthropogenic impacts, whereas Hg could be occasionally associated with adverse biological effects. The biota to water accumulation factor (BWAF) reflected that fish species showed potential to accumulate Cr (BWAF: 73-510) and, especially, Hg (BWAF: 1000-8000). The high biota to sediment accumulation factor found for Hg (up to 9.8) indicated that fish species behaved as macro or micro concentrators. These results highlights the importance of a multi compartment approach in pollution assessment, with implicances for future works.
Collapse
Affiliation(s)
- Noelia S La Colla
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina.
| | - Sandra E Botté
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, 8000, Argentina
| | - Pia Simonetti
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Vanesa L Negrin
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, 8000, Argentina
| | - Analía V Serra
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Jorge E Marcovecchio
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina; Universidad de la Fraternidad de Agrupaciones Santo Tomás de Aquino, Gascón 3145, Mar del Plata, 7600, Argentina; Universidad Tecnológica Nacional - FRBB, 11 de Abril 445, Bahía Blanca, 8000, Argentina; Academia Nacional de Ciencias Exactas, Físicas y Naturales (ANCEFN), Av. Alvear 1711, Ciudad Autónoma de Buenos Aires, 1014, Argentina
| |
Collapse
|
13
|
Santos LN, Neves RAF, Koureiche AC, Lailson-Brito J. Mercury concentration in the sentinel fish species Orthopristis ruber: Effects of environmental and biological factors and human risk assessment. MARINE POLLUTION BULLETIN 2021; 169:112508. [PMID: 34049065 DOI: 10.1016/j.marpolbul.2021.112508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The present study aimed to assess corocoro grunt use as bioindicator of Hg contamination in coastal marine systems by testing environmental (seasons) and biological effects (sexual maturity, size and weight) on THg accumulation and assessing human health risk. Fish was captured in winter and summer seasons at Vermelha Beach, Rio de Janeiro, Southeast Brazil. Adult O. ruber showed significantly higher THg than juveniles, and THg concentrations were positively correlated to fish length and weight. Fish THg concentrations did not differ between seasons and were below the accepted limit for human consumption. Human exposure risk by fish consumption was 0.31 μg MeHg kg-1 week-1 and the hazard quotient was 0.44 (0.11-1.84). Our results confirm the applied use of O. ruber as sentinel species for Hg contamination monitoring and highlight concern for its consumption, especially for local fishermen populations that highly consume this fish and may be more susceptible to Hg adverse effects.
Collapse
Affiliation(s)
- Luciano N Santos
- Programa de Pós-Graduação em Biodiversidade Neotropical (PPGBIO), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Brazil
| | - Raquel A F Neves
- Programa de Pós-Graduação em Biodiversidade Neotropical (PPGBIO), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Brazil.
| | - Amanda C Koureiche
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profa. Izabel Gurgel" (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Brazil
| | - José Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profa. Izabel Gurgel" (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Sun S, Wang N, Shi X. In vivo visualization assay to evaluate the effects of maternal exposure to mercury on offspring bioaccumulation in the oriental river prawn (Macrobrachium nipponense). CHEMOSPHERE 2021; 270:129440. [PMID: 33412353 DOI: 10.1016/j.chemosphere.2020.129440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) is a persistent pollutant that accumulates in aquatic animals. However, studies related to understand how gonad tissue of this species responds to mercury exposure and elucidation of mercury bioaccumulation in crustacean offspring by cross-generational, are still sparse. The present study aimed to assess the bioaccumulation of Hg2+in vivo in prawn offspring by a specific aggregation-induced emission fluorogen (AIEgen). The 96 h median lethal concentration (LC50) values of mercury to the juveniles were 0.072 mg/L. Hg2+ reduced growth performance, damaged oocyte quality, and inhibited ovary maturation, thus inhibiting gonadal maturation in intact prawns. F1 offspring were exposed to Hg2+ by direct transfer from their F0 parents, as shown by the distribution of mercury in gonads and fertilized eggs. In the medium containing oriental river prawn larvae, the Hg2+ concentration decreased rapidly, indicating fast initial larval uptake of Hg2+. Due to metal ion triggered AIE activity, analysis of fluorescence images showed that prawn offspring accumulated Hg2+ via maternal transfer, and there was a relationship among the photoluminescence intensity, the AIEgen concentration, and mercury levels. The quantitative detection of Hg2+ absorption from prawn larvae by the AIEgen represents a novel analytical technique to understand the dynamics of Hg2+ between maternal and offspring.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, 443002, China.
| | - Ning Wang
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Xiaotao Shi
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
15
|
Simonetti P, Truchet DM, Buzzi NS, Marcovecchio JE. First approaches to the depuration process of trace metals in the burrowing crab Neohelice granulata from a temperate wetland in South America: Bahía Blanca estuary, Argentina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36900-36912. [PMID: 32577966 DOI: 10.1007/s11356-020-09776-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Trace metal contamination is among the major concerns of stakeholders due to its potential adverse effects on biota and humans, even at low concentrations. Few studies have recently focused on the ability of organisms to depurate trace metals from different tissues. Therefore, we carried out this study to evaluate the bioconcentration of trace metals (Cd, Zn, Pb, Ni, Mn, Fe, Cr, Cu) and the depuration process of these pollutants in two tissues (soft tissue and carapace) in an estuarine benthic crab model, Neohelice granulata. The results indicate that Cu and Zn were the highest bioconcentrated metals in crab tissues, while other metals, such as Pb and Cr, were found in sediments but were not bioconcentrated. On the other hand, Cd was found in crabs but not in sediments. The depuration indicates a total decline in Ni and a significant decrease in Cu and Fe in the soft tissues after the experiment. However, the concentration of the trace metals in the carapace before and after the depuration did not show any significant variation except in the Mn, in which the levels decreased significantly at the end of the depuration. Thus, we recommend continuing to explore metal detoxification in bioindicator species, such as N. granulata, in order to understand the efficiency of the mechanisms of depuration of trace metals.
Collapse
Affiliation(s)
- Pía Simonetti
- Área de Oceanografía Química, CCT-CONICET, Instituto Argentino de Oceanografía (IADO), Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Pcia. de Bs. As., Argentina.
| | - Daniela M Truchet
- Área de Oceanografía Química, CCT-CONICET, Instituto Argentino de Oceanografía (IADO), Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Pcia. de Bs. As., Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Pcia. de Bs. As., Argentina
| | - Natalia S Buzzi
- Área de Oceanografía Química, CCT-CONICET, Instituto Argentino de Oceanografía (IADO), Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Pcia. de Bs. As., Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Pcia. de Bs. As., Argentina
| | - Jorge E Marcovecchio
- Área de Oceanografía Química, CCT-CONICET, Instituto Argentino de Oceanografía (IADO), Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Pcia. de Bs. As., Argentina
- Universidad Tecnológica Nacional (UTN-FRBB), 11 de abril 461, B8000LMI, Bahía Blanca, Pcia. de Bs. As., Argentina
- Universidad FASTA, Gascón 3145, B7600FNK, Mar del Plata, Pcia. de Bs. As., Argentina
| |
Collapse
|
16
|
Truchet DM, Buzzi NS, Simonetti P, Marcovecchio JE. Uptake and detoxification of trace metals in estuarine crabs: insights into the role of metallothioneins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31905-31917. [PMID: 32504443 DOI: 10.1007/s11356-020-09335-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The detoxification process of trace metals in the estuarine burrowing crab Neohelice granulata, after previously being exposed to anthropogenic pressures in the field, is described for the first time. The objectives of this study were (a) to assess the metal content (Cd, Cu, Pb, Zn, Mn, Ni, Cr, Fe) in the sediments and the uptake of these elements in the hepatopancreas of N. granulata; (b) to quantify trace metal concentrations in the hepatopancreas before and after the detoxification experiment; and (c) to relate this information to metallothionein (MT) induction or reversibility. The detoxification assay was performed for 25 days with artificial seawater under controlled conditions in a culture chamber. The results showed higher uptake and bioaccumulation of Zn and Cu from the sediments, and the hepatopancreas exhibited increased levels of Zn and lower concentrations of the rest of the metals and MTs after the assay, mainly Fe and Mn that were significantly lower. We conclude that trace metals could be translocated to and accumulated in the hepatopancreas, the main metabolic organ, and then eliminated under controlled conditions with corresponding reversibility of MTs. Graphical abstract.
Collapse
Affiliation(s)
- Daniela María Truchet
- Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO), CCT-CONICET, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Buenos Aires, Argentina.
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Buenos Aires, Argentina.
| | - Natalia Sol Buzzi
- Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO), CCT-CONICET, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Buenos Aires, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Buenos Aires, Argentina
| | - Pía Simonetti
- Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO), CCT-CONICET, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Buenos Aires, Argentina
| | - Jorge Eduardo Marcovecchio
- Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO), CCT-CONICET, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Buenos Aires, Argentina
- Universidad Tecnológica Nacional (UTN-FRBB), 11 de abril 461, B8000LMI, Bahía Blanca, Buenos Aires, Argentina
- Universidad FASTA, Gascón 3145, B7600FNK, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
17
|
Rahmanikhah Z, Esmaili-Sari A, Bahramifar N. Total mercury and methylmercury concentrations in native and invasive fish species in Shadegan International Wetland, Iran, and health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6765-6773. [PMID: 31960239 DOI: 10.1007/s11356-019-07218-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Human exposure to mercury (Hg) mainly occurs through consumption of aquatics, especially fish. In aquatic systems, the bioaccumulation of Hg across trophic levels could be altered by invasive species through changing community composition. The present study is aimed at measuring total mercury (T-Hg) and methylmercury (MeHg) concentrations in non-native (redbelly tilapia (Tilapia zillii)) and native (Benni (Mesopotamichthys sharpeyi) and common carp (Cyprinus carpio)) fish species throughout Shadegan International Wetland and comparing health risk of their mercury contents to the local population. The concentrations were measured using a direct mercury analyzer (DMA 80). The average values of T-Hg and MeHg for native fishes were 19.8 and 10.49 μg/kg. These concentrations for the invasive fish were 28 and 14.62 μg/kg respectively. Despite having less length and weight than the native fish species, tilapia showed significantly higher T-Hg content, yet the lowest concentration of MeHg was observed in common carp with larger body length and weight. Concerning mercury health risk to consumers, tilapia demonstrated the highest estimated weekly intake (EWI) and percentages of tolerable weekly intake (%TWI) for both T-Hg and MeHg, while the highest hazard quotient (HQ) values were obtained for tilapia and Benni. Taken together, the mercury concentrations in the two native and non-native fishes were acceptable according to the international safety guidelines although the local people shall be warned for consumption of tilapia. Furthermore, the low calculated value of tissue residue criterion (TRC) for the wetland fishes sounds a warning.
Collapse
Affiliation(s)
- Zahedeh Rahmanikhah
- Department of Environment, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran.
| | - Abbas Esmaili-Sari
- Department of Environment, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran.
| | - Nader Bahramifar
- Department of Environment, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran
| |
Collapse
|
18
|
Truchet DM, Noceti MB, Villagrán DM, Orazi MM, Medrano MC, Buzzi NS. Fishers' Ecological Knowledge about Marine Pollution: What Can FEK Contribute to Ecological and Conservation Studies of a Southwestern Atlantic Estuary? J ETHNOBIOL 2019. [DOI: 10.2993/0278-0771-39.4.584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Daniela M. Truchet
- 1 Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS) – CONICET Bahía Blanca, Camino La Carrindanga km 7, Edificio E1, C.C 804, 8000 Bahía Blanca, Argentina
| | - M. Belén Noceti
- Instituto de Investigaciones Económicas y Sociales del Sur (IIESS), Universidad Nacional del Sur (UNS) – CONICET, Bahía Blanca, Argentina
| | - Diana M. Villagrán
- 1 Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS) – CONICET Bahía Blanca, Camino La Carrindanga km 7, Edificio E1, C.C 804, 8000 Bahía Blanca, Argentina
| | - Melina M. Orazi
- 1 Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS) – CONICET Bahía Blanca, Camino La Carrindanga km 7, Edificio E1, C.C 804, 8000 Bahía Blanca, Argentina
| | - M. Celeste Medrano
- Instituto de Ciencias Antropológicas, Sección de Etnología y Etnografía. Facultad de Filosofía y Letras, Universidad de Buenos Aires (FFyL-UBA) – CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia S. Buzzi
- 1 Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS) – CONICET Bahía Blanca, Camino La Carrindanga km 7, Edificio E1, C.C 804, 8000 Bahía Blanca, Argentina
| |
Collapse
|
19
|
Forján R, Baragaño D, Boente C, Fernández-Iglesias E, Rodríguez-Valdes E, Gallego JR. Contribution of fluorite mining waste to mercury contamination in coastal systems. MARINE POLLUTION BULLETIN 2019; 149:110576. [PMID: 31546111 DOI: 10.1016/j.marpolbul.2019.110576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Samples from 13 beaches along the northern Spanish coast, a region with a history of heavy industries, were first screened to identify signs of pollution. High concentrations of Hg and Ba on Vega beach were found, both elements belong to the fluorite ore paragenesis, mined in the surroundings. Samples of beach and fluvial sediments, and nearby soils were collected in Vega beach area to address potential Hg pollution, fate and sources. Most samples showed a similar pollutants fingerprint to that of beach samples, especially those taken from white dunes, registering notable Hg concentrations. Hg was enriched in the finer fractions, and overall the main input was attributed to the mining waste discharged along the coast in the past. Although a specific risk assessment and study of the submerged sediments are advisable for this area, Hg bioavailability and methylation were low, thus indicating that this metal poses a reduced environmental risk.
Collapse
Affiliation(s)
- Rubén Forján
- INDUROT and Environmental Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres 33600, Spain; Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Lagoas, Marcosende, 36310 Vigo, Pontevedra, Spain.
| | - Diego Baragaño
- INDUROT and Environmental Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres 33600, Spain
| | - Carlos Boente
- INDUROT and Environmental Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres 33600, Spain
| | - Elena Fernández-Iglesias
- INDUROT and Environmental Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres 33600, Spain
| | - Eduardo Rodríguez-Valdes
- INDUROT and Environmental Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres 33600, Spain
| | - J R Gallego
- INDUROT and Environmental Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres 33600, Spain
| |
Collapse
|