1
|
Cao X, Wu Y, Bai F, Zheng X, Lei W, Zhang Z, Mai BX. Persistent, bioaccumulative, and toxic pollutants in migratory waterbirds from Bohai Bay, China: Implications on distinct pollutant sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178782. [PMID: 39946887 DOI: 10.1016/j.scitotenv.2025.178782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
Bohai Bay is an important stopover on the East Asian-Australasian flyway (EAAF) for migratory birds. In the present study, eggs of three migratory waterbird species, Little Terns (Sterna albifrons), Pied Avocets (Recurvirostra avosetta), and Black-winged Stilts (Himantopus himantopus), and local aquatic organisms from Bohai Bay (Nanpu and Dongying wetlands) were collected to determine stable isotope (13C, 15N, D) signature and concentrations of mercury (Hg), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDTs), and short-chain chlorinated paraffins (SCCPs). Organisms from Nanpu had significantly higher δD values than Dongying, which was related to local salinity. The pollution profiles showed species-specific difference in the same site, but no spatial difference for the same bird species from two wetlands. Positive correlations were observed between δ15N values and concentrations of Hg and PCBs, but not DDTs and SCCPs, because of the complex pollution sources in migration routes. The pollution exposure in the annual life cycle for Pied Avocets based on migration route information suggests that Hg and PCBs in eggs mainly originate from the breeding site (Bohai Bay), while DDTs are mainly from the wintering sites (the middle and lower reaches of the Yangtze River). Pollutants could pose considerable negative effect on eggshell thickness. The present study promotes the importance of pollutant exposure and risk assessment in the entire migration cycle for migratory birds.
Collapse
Affiliation(s)
- Xingpei Cao
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Furong Bai
- Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaobo Zheng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Weipan Lei
- Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhengwang Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Bi-Xian Mai
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
2
|
Xiao Q, Xu X, Chen L, Fu B, Cao J, Liu J, Zhang H, Lu S. Parabens, triclosan, and triclocarban in aquatic products from Shenzhen, China and the relative health risk. CHEMOSPHERE 2024; 367:143652. [PMID: 39476985 DOI: 10.1016/j.chemosphere.2024.143652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
The consumption of contaminated aquatic products may expose humans to residues of parabens, triclosan (TCS), and triclocarban (TCC). Despite its significance, empirical research on this issue remains limited. In this study, we employed high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to analyze extracts from 245 aquatic product samples collected randomly from local markets in Shenzhen, Guangdong Province. Our analysis detected at least one of the five parabens-methyl 4-hydroxybenzoate (MeP), ethyl 4-hydroxybenzoate (EtP), propyl 4-hydroxybenzoate (PrP), butyl 4-hydroxybenzoate (BuP), and benzyl 4-hydroxybenzoate (BeP)-in 88 samples (35.9%). TCS and TCC were found in 50.6% and 51.4% of the samples, respectively, with MeP being the most frequently detected paraben. Significant negative correlations were observed between TCS and MeP (r = -0.129, p < 0.05) and between TCC and MeP (r = -0.176, p < 0.05), indicating potential different sources for these contaminants. Residue levels varied among different types of aquatic products, with TCS and TCC concentrations being higher in fish compared to crustaceans and bivalves. The health risk associated with consuming these contaminants was found to be minimal for both males and females. This study provides valuable insights into the dietary risks associated with exposure to parabens, TCS, and TCC.
Collapse
Affiliation(s)
- Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xiaoqiong Xu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Leyi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Bingyi Fu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiajun Cao
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiayi Liu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Han Zhang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Qiao L, Chen Y, Ren C, Li T, Zhao A, Fan S, Bao J. Benthic foraminiferal community structure and its response to environmental factors revealed using high-throughput sequencing in the Zhoushan Fishing Ground, East China Sea. MARINE POLLUTION BULLETIN 2024; 202:116385. [PMID: 38669854 DOI: 10.1016/j.marpolbul.2024.116385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/31/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Benthic foraminifera are excellent tools for monitoring marine environments and reconstructing paleoenvironments. This study investigated the structure and diversity of benthic foraminiferal communities in 20 superficial sediment samples obtained from the Zhoushan Fishing Ground (ZFG) using high-throughput sequencing based on small subunit ribosomal DNA and RNA amplification. The results revealed Rotaliida as the most dominant group, with spatial heterogeneity in foraminiferal distribution. Total benthic foraminiferal communities exhibited higher species richness and diversity compared to active communities. While heavy metal pollution in the ZFG was moderate, areas with elevated concentrations of heavy metals exhibited low diversity and richness in foraminiferal communities. Total foraminiferal community structure was primarily influenced by factors such as water depth and Hg, Pb, Cd, and Zn levels. Notably, Hg levels emerged as a critical factor impacting the structure and diversity of the active foraminiferal community. The dominant species, Operculina, exhibited tolerance toward heavy metal pollution.
Collapse
Affiliation(s)
- Ling Qiao
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Ye Chen
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Chengzhe Ren
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316004, China.
| | - Tiejun Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Anran Zhao
- School of Fishery, Zhejiang Ocean University, Zhoushan 316004, China
| | - Songyao Fan
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316004, China
| | - Jingjiao Bao
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| |
Collapse
|
4
|
Tran-Lam TT, Thi Phung AT, Thi Pham P, Quang Bui M, Hai Dao Y, Truong Le G. Occurrence, biomagnification, and risk assessment of parabens and their metabolites in marine fish: The case study of Vietnam. CHEMOSPHERE 2023; 344:140221. [PMID: 37741370 DOI: 10.1016/j.chemosphere.2023.140221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Parabens have emerged as the primary preservative of choice in numerous consumer goods, prompting growing apprehension regarding their potential for human exposure. The study employed the optimized QuEChERs sample extraction method and the UHPLC-Q-Orbitrap HRMS system to generate the initial contamination profiles of seven parabens and their four metabolites in a total of 114 fish samples found along the coastline of Vietnam. The findings of the study indicated that methylparaben was the predominant substance detected, exhibiting the highest concentration in the largehead hairtail (Trichiurus lepturus) species at 32.8 ng g-1 dry weight (dw). Additionally, the metabolites with the highest detectable concentrations in the largehead hairtail were found to be 4-HB and 3,4-DHB, with levels of 8822.0 ng g-1 dw and 3490.8 ng g-1 dw, respectively. Besides, the study reveals notable variations in paraben concentrations across three distinct regions in Vietnam, namely the Central, North, and South (Mann-Whitney U test, p < 0.05). The trophic magnification factors (TMF) for methylparaben, ethylparaben, ethyl protocatechuate, and 4-hydroxybenzoic acid exhibited values exceeding 1, indicating substantial biomagnification of these substances within the marine food web of Vietnam. Additionally, noteworthy positive associations have been observed between methylparaben and ethylparaben, as well as their respective metabolites. Based on the findings of the study, it can be concluded that there is no direct impact of seafood consumption on human health in Vietnam.
Collapse
Affiliation(s)
- Thanh-Thien Tran-Lam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Viet Nam; Institute of Mechanics and Applied Informatics, VAST, 291 Dien Bien Phu, Ward 7, District 3, Ho Chi Minh City, 70000, Viet Nam
| | - Anh-Tuyet Thi Phung
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Viet Nam; Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Phuong Thi Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam; Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Viet Nam
| | - Minh Quang Bui
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Viet Nam
| | - Yen Hai Dao
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam.
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| |
Collapse
|
5
|
Xie J, Tu S, Hayat K, Lan R, Chen C, Leng T, Zhang H, Lin T, Liu W. Trophodynamics of halogenated organic pollutants (HOPs) in aquatic food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166426. [PMID: 37598971 DOI: 10.1016/j.scitotenv.2023.166426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Halogenated organic pollutants (HOPs) represent hazardous and persistent compounds characterized by their capacity to accumulate within organisms and endure in the environment. These substances are frequently transmitted through aquatic food webs, engendering potential hazards to ecosystems and human well-being. The trophodynamics of HOPs in aquatic food webs has garnered worldwide attention within the scientific community. Despite comprehensive research endeavors, the prevailing trajectory of HOPs, whether inclined toward biomagnification or biodilution within global aquatic food webs, remains unresolved. Furthermore, while numerous studies have probed the variables influencing the trophic magnification factor (TMF), the paramount determinant remains elusive. Collating a compendium of pertinent literature encompassing TMFs from the Web of Science between 1994 and 2023, our analysis underscores the disparities in attention accorded to legacy HOPs compared to emerging counterparts. A discernible pattern of biomagnification characterizes the behavior of HOPs within aquatic food webs. Geographically, the northern hemisphere, including Asia, Europe, and North America, has demonstrated greater biomagnification than its southern hemisphere counterparts. Utilizing a boosted regression tree (BRT) approach, we reveal that the food web length and type emerge as pivotal determinants influencing TMFs. This review provides a valuable basis for gauging ecological and health risks, thereby facilitating the formulation of robust standards for managing aquatic environments.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Shuyi Tu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ruo Lan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Chuchu Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Tiantian Leng
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Hanlin Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Zhang X, Xiong W, Wu Q, Nian K, Pan X, Crump D, Wang X, Lin Y, Zhang X, Zhang R. Bioaccumulation, Trophic Transfer, and Biotransformation of Polychlorinated Diphenyl Ethers in a Simulated Aquatic Food Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5751-5760. [PMID: 36975752 DOI: 10.1021/acs.est.2c08216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polychlorinated diphenyl ethers (PCDEs) are detected in aquatic environments and demonstrate adverse effects in aquatic organisms. However, data regarding the environmental behavior of PCDEs in aquatic ecosystems are lacking. In the present study, a simulated aquatic food chain (Scenedesmus obliquus-Daphnia magna-Danio rerio) was constructed in a lab setting, and the bioaccumulation, trophic transfer, and biotransformation of 12 PCDE congeners were quantitatively investigated for the first time. The log-transformed bioaccumulation factors (BCFs) of PCDEs in S. obliquus, D. magna, and D. rerio were in the range of 2.94-3.77, 3.29-4.03, and 2.42-2.89 L/kg w.w., respectively, indicating the species-specific bioaccumulation of PCDE congeners. The BCF values increased significantly with the increasing number of substituted Cl atoms, with the exception of CDE 209. The number of Cl atoms at the para and meta positions were found to be the major positive contributing factors for BCFs in the case of the same number of substituted Cl. The lipid-normalized biomagnification factors (BMFs) of S. obliquus to D. magna, D. magna to D. rerio, and the whole food chain for the 12 PCDE congeners ranged at 1.08-2.27, 0.81-1.64, and 0.88-3.64, respectively, suggesting that some congeners had BMFs comparable to PBDEs and PCBs. Dechlorination was the only metabolic pathway observed for S. obliquus and D. magna. For D. rerio, dechlorination, methoxylation, and hydroxylation metabolic pathways were observed. 1H nuclear magnetic resonance (NMR) experiments and theoretical calculations confirmed that methoxylation and hydroxylation occurred at the ortho position of the benzene rings. In addition, reliable quantitative structure-property relationship (QSPR) models were constructed to qualitatively describe the relationships between molecular structure descriptors and BCFs for PCDEs. These findings provide insights into the movement and transformation of PCDEs in aquatic ecosystems.
Collapse
Affiliation(s)
- Xuesheng Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui 230601, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, Anhui 230601, China
| | - Wenli Xiong
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui 230601, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, Anhui 230601, China
| | - Qiuxuan Wu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kainan Nian
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui 230601, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, Anhui 230601, China
| | - Xiaoxue Pan
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa K1A 0H3, Canada
| | - Xiaoxiang Wang
- Institute for Carbon-Neutral Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yishan Lin
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Rui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
7
|
Cao X, Lu R, Xu Q, Zheng X, Zeng Y, Mai B. Distinct biomagnification of chlorinated persistent organic pollutants in adjacent aquatic and terrestrial food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120841. [PMID: 36493935 DOI: 10.1016/j.envpol.2022.120841] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Biomagnification of persistent organic pollutants (POPs) in food webs has been studied for many years. However, the different processes and influencing factors in biomagnification of POPs in aquatic and terrestrial food webs still need clarification. Polychlorinated biphenyls (PCBs) and short-chain chlorinated paraffins (SCCPs) were measured in organisms from adjacent terrestrial and aquatic environment in this study. The median levels of PCBs in terrestrial and aquatic organisms were 21.7-138 ng/g lw and 37.1-149 ng/g lw, respectively. SCCP concentrations were 18.6-87.3 μg/g lw and 21.4-93.9 μg/g lw in terrestrial and aquatic organisms, respectively. Biomagnification factors (BMFs) of PCBs increased with higher log KOW in all food chains. BMFs of SCCPs were negatively correlated with log KOW in aquatic food chains, but positively correlated with log KOW in terrestrial food chains. The terrestrial food web had similar trophic magnification factors (TMFs) of PCBs, and higher TMFs of SCCPs than the aquatic food web. Biomagnification of PCBs was consistent in aquatic and terrestrial food webs, while SCCPs had higher biomagnification potential in terrestrial than aquatic organisms. The distinct biomagnification of SCCPs was affected by the respiratory elimination for terrestrial organisms, the different metabolism rates in various species, and more homotherms in terrestrial food webs. Fugacity model can well predict levels of less hydrophobic chemicals, and warrants more precise toxicokinetic data of SCCPs.
Collapse
Affiliation(s)
- Xingpei Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruifeng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qishan Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaobo Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
8
|
Ravanipour M, Nabipour I, Yunesian M, Rastkari N, Mahvi AH. Exposure sources of polychlorinated biphenyls (PCBs) and health risk assessment: a systematic review in Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55437-55456. [PMID: 35676570 DOI: 10.1007/s11356-022-21274-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/31/2022] [Indexed: 12/07/2022]
Abstract
This systematic review aims to identify the sources of exposure to polychlorinated biphenyls (PCBs), portioning, and human health risk assessment in Iran. The literature was searched in the international databases of Web of Science, PubMed, Scopus, Google Scholar, and the national databases of SID and MagIran up to November 14, 2020. Among all 153 articles, 21 eligible papers were identified. Among them, only one article was related to drinking water, the rest was related to food and soil, and no article was found on ambient air. The corrected portion of each exposure source was determined to be 90% for food, 9% for water, and 1% for air. The total hazard quotient (HQ) was determined to be within an unsafe range, and the total excess lifetime cancer risk (ELCR) was determined to be at a high risk of oral carcinogenesis. It is suggested that a comprehensive study be conducted in a specific period for all sources of exposure in all counties of Iran. Moreover, it is recommended that the policymakers set national standards for this pollutant in near future in some sources of exposure (e.g., drinking water) which have no standards in Iran.
Collapse
Affiliation(s)
- Masoumeh Ravanipour
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, PourSina St., Qods St., Enghelab St, Tehran, 141761315, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, PourSina St., Qods St., Enghelab St, Tehran, 141761315, Iran
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Rastkari
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, PourSina St., Qods St., Enghelab St, Tehran, 141761315, Iran.
- Center for Solid Waste Research (CSWR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Huang Z, Qadeer A, Zheng S, Ge F, Zhang K, Yin D, Zheng B, Zhao X. Fatty acid profile as an efficient bioindicator of PCB bioaccumulation in a freshwater lake food web: A stable isotope guided investigation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127121. [PMID: 34534807 DOI: 10.1016/j.jhazmat.2021.127121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
In past studies, the health and ecological risks of PCBs are well established. The impact of low-dose PCBs on aquatic ecosystems for an extended period is a matter of concern in the current era. The application of fatty acids (FAs) as bioindicators of pollution in the freshwater food web is almost unavailable. This study investigated concentrations of 209 PCB congeners, stable isotope levels, and FAs composition in ten freshwater species of Dongtinghu Lake, China. Total PCB congeners (∑PCBs) concentrations were ranged from 4.17 to 38.35 ng/g lipid weight. A total of 84 PCB congeners were detected out of 209 target PCB congeners, particularly PCB101, 118, 138, 153, and 155 found in all samples. The concentrations of 24 PCB congeners increased with trophic levels, but PCB 155 concentrations were consistent throughout trophic levels. The toxic equivalents (TEQ) of dl-PCBs (mostly PCB 126 and 169) also increased with trophic levels Out of total 35 FAs, 21 FAs were significantly positively correlated with 43 PCB congeners. Among FAs, C16:0 was the most abundant and positively correlated with most PCB compounds. Positive correlations between FAs and PCBs indicated that FAs can be used as efficient bioindicators of PCBs pollution in the aquatic food web.
Collapse
Affiliation(s)
- Zhifeng Huang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Abdul Qadeer
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Saisai Zheng
- Nanchang Institute of Technology, Nanchang 330099, China
| | - Fangfang Ge
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kexin Zhang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Binghui Zheng
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xingru Zhao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
10
|
Wang ZT, Supin AY, Akamatsu T, Duan PX, Yang YN, Wang KX, Wang D. Auditory evoked potential in stranded melon-headed whales (Peponocephala electra): With severe hearing loss and possibly caused by anthropogenic noise pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113047. [PMID: 34861441 DOI: 10.1016/j.ecoenv.2021.113047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Highly concentrated live mass stranding events of dolphins and whales happened in the eastern coast of China between June and October 2021. The current study adopted the non-invasive auditory evoked-potential technique to investigate the hearing threshold of a stranded melon headed whale (Peponocephala electra) at a frequency range of between 9.5 and 181 kHz. It was found that, at the frequency range of from 10 to 100 kHz, hearing thresholds for the animal were between 20 and 65 dB higher than those of its phylogenetically closest species (Pygmy killer whale). The severe hearing loss in the melon headed whale was probably caused by transient intense anthropogenic sonar or chronic shipping noise exposures. The hearing loss could have been the cause for the observed temporal and spatial clustered stranding events. Therefore, there is need for noise mitigation strategies to reduce noise exposure levels for marine mammals in the coastal areas of China.
Collapse
Affiliation(s)
- Zhi-Tao Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, China
| | - Alexander Ya Supin
- Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Tomonari Akamatsu
- Ocean Policy Research Institute, the Sasakawa Peace Foundation, Tokyo, Japan
| | - Peng-Xiang Duan
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, China
| | - Yi-Ning Yang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, China
| | - Ke-Xiong Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, China.
| | - Ding Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, China.
| |
Collapse
|
11
|
An Y, Hong S, Kim Y, Kim M, Choi B, Won EJ, Shin KH. Trophic transfer of persistent toxic substances through a coastal food web in Ulsan Bay, South Korea: Application of compound-specific isotope analysis of nitrogen in amino acids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115160. [PMID: 32682185 DOI: 10.1016/j.envpol.2020.115160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Trophic magnification factor (TMF) of persistent toxic substances (PTSs: Hg, PCBs, PAHs, and styrene oligomers (SOs)) in a coastal food web (12 fish and four invertebrates) was determined in Ulsan Bay, South Korea. The nitrogen stable isotope ratios (δ15N) of amino acids [δ15NGlu-Phe based on glutamic acid (δ15NGlu) and phenylalanine (δ15NPhe)] were used to estimate the trophic position (TPGlu-Phe) of organisms. The TPGlu-Phe of organisms ranged from 1.64 to 3.69, which was lower than TP estimated by δ15N of bulk particulate organic matter (TPBulk: 2.46-4.21). Mercury and CB 138, 153, 187, and 180 were biomagnified through the whole food web (TMF > 1), while other PTSs, such as PAHs and SOs were not (biodilution of SOs firstly reported). In particular, the trophic transfer of PTSs was pronounced in the resident fish (e.g., rock bream, sea perch, Korean rockfish). Of note, CB 99, 101, 118, and 183 were additionally found to be biomagnifying PTSs in these species. Thus, fish residency appears to represent an important factor in determining the TMF of PTSs in the coastal environment. Overall, δ15NGlu-Phe provided accurate TPs of organisms and could be applied to determine the trophic transfer of PTSs in coastal food webs.
Collapse
Affiliation(s)
- Yoonyoung An
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Youngnam Kim
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mungi Kim
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bohyung Choi
- Department of Marine Sciences & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Sciences & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
12
|
Ruan J, Guo J, Huang Y, Mao Y, Yang Z, Zuo Z. Adolescent exposure to environmental level of PCBs (Aroclor 1254) induces non-alcoholic fatty liver disease in male mice. ENVIRONMENTAL RESEARCH 2020; 181:108909. [PMID: 31776016 DOI: 10.1016/j.envres.2019.108909] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants found in various environmental media, and there is growing evidence that PCBs may contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The purposes of this study were to investigate whether environmental level of Aroclor 1254 (a commercial mixture of PCBs) exposure to adolescent male mice could induce the development of NAFLD and the mechanisms involved. Twenty-one-day-old male C57BL/6 mice were exposed to Aroclor 1254 (0.5-500 μg/kg body weight) by oral gavage once every third day for 60 days. The results showed that exposure to Aroclor 1254 increased body weight and decreased the liver-somatic index in a dose-dependent manner. Aroclor 1254 administration increased lipid accumulation in the liver and induced the mRNA expression of genes associated with lipogenesis, including acetyl-CoA carboxylase 1 (Acc1), acetyl-CoA carboxylase 2 (Acc2) and fatty acid synthase (Fasn). Moreover, Aroclor 1254 decreased peroxisome proliferator-activated receptor alpha (PPARα) signaling and lipid oxidation. In addition, we found that Aroclor 1254 administration induced oxidative stress in mouse liver and elevated the protein level of cyclooxygenase 2 (COX-2), an inflammatory molecule, possibly via the endoplasmic reticulum (ER) stress inositol-requiring enzyme 1α-X-box-binding protein-1 (IRE1α-XBP1) pathway, but not the nuclear factor-κB (NF-κB) pathway. In summary, adolescent exposure to environmental level of PCBs stimulated oxidative stress, ER stress and the inflammatory response and caused NAFLD in male mice. This work provides new insight into the idea that adolescent exposure to environmental level of PCBs might induce the development of NAFLD under the regulation of ER stress in males.
Collapse
Affiliation(s)
- Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yameng Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yunzi Mao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenggang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|