1
|
Abbas M, Ni L, Du C. Assessment of hydrocarbon degradation capacity and kinetic modeling of Chlorella vulgaris and Scenedesmus quadricauda for crude oil phycoremediation under mixotrophic conditions. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1914-1922. [PMID: 38847151 DOI: 10.1080/15226514.2024.2361318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Crude oil spills imperil aquatic ecosystems globally, prompting innovative solutions such as microalgae-based bioremediation. This study explores the potential of Chlorella vulgaris and Scenedesmus quadricauda, for crude oil spill phycoremediation under mixotrophic conditions and varying crude oil concentrations (0.5-2%). C. vulgaris demonstrated notable resilience, thriving up to 1% crude oil exposure, while S. quadricauda adapted to lower concentrations. Optimal growth for both was observed at 0.5% exposure. Chlorophyll a content in C. vulgaris increases at 0.5% exposure but declines above 1%, while a decline was noticeable in chlorophyll b in treatment groups above 1%. Carotenoid levels varied, displaying the highest levels at higher concentrations above 1.5%. Similarly, S. quadricauda showed increased chlorophyll a content at 0.5% exposure, with stable carotenoid levels and a decline in chlorophyll b content at higher concentrations. GC/MS analyses indicated C. vulgaris efficiently degraded aliphatic compounds like decane and tridecane, surpassing S. quadricauda in degrading both aliphatic and aromatic hydrocarbons. Growth kinetics was best represented by the modified Gompertz and logistic models. These findings highlight the species-specific adaptability and optimal concentration for microalgae to degrade crude oil effectively, advancing phycoremediation processes and strategies critical for environmental restoration.
Collapse
Affiliation(s)
- Mohamed Abbas
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, School of Environment, Hohai University, Nanjing, China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, School of Environment, Hohai University, Nanjing, China
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, School of Environment, Hohai University, Nanjing, China
| |
Collapse
|
2
|
Hardikar R, Haridevi CK, Deshbhratar S. Trait-based classification and environmental drivers of phytoplankton functional structure from anthropogenically altered tropical creek, Thane Creek India. MARINE POLLUTION BULLETIN 2024; 198:115767. [PMID: 38000261 DOI: 10.1016/j.marpolbul.2023.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
The present study on variability in phytoplankton functional structure through a trait-based approach described the species-trait-environmental relationship and its possible impact on ecosystem functioning. Based on trait similarities 102 phytoplankton species were clubbed into 14 distinct functional groups. Among others, FGs-XI and XII (small size, chain-forming species with medium to high SA:V ratio and space between cells in chain) were the most dominant due to their competitive advantage in resource utilization and avoidance of loss processes. The morphological traits space between cells and cellular protrusion along with temperature and ammonia played a decisive role in their seasonal succession. Eutrophication in Thane Creek favors the dominance of anti-grazing traits which increases the phytoplankton biomass through efficient resource acquisition but can encumber the energy transfer efficiency. The dominance of HAB species impedes ecosystem functioning which raises public health concerns. The strong correlation of environmental variables with phytoplankton functional structure reinforces the practical implementation of a trait-based approach for understanding phytoplankton community dynamics under varying environmental conditions.
Collapse
Affiliation(s)
- Revati Hardikar
- CSIR-National Institute of Oceanography, regional centre-Mumbai, Lokhandwala Road, Andheri, India; Bhavan's, Hazarimal Somani College, Mumbai, India
| | - C K Haridevi
- CSIR-National Institute of Oceanography, regional centre-Mumbai, Lokhandwala Road, Andheri, India.
| | | |
Collapse
|
3
|
Kamalanathan M, Mapes S, Prouse A, Faulkner P, Klobusnik NH, Hillhouse J, Hala D, Quigg A. Core metabolism plasticity in phytoplankton: Response of Dunaliella tertiolecta to oil exposure. JOURNAL OF PHYCOLOGY 2022; 58:804-814. [PMID: 36056600 PMCID: PMC10087180 DOI: 10.1111/jpy.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Human alterations to the marine environment such as an oil spill can induce oxidative stress in phytoplankton. Exposure to oil has been shown to be lethal to most phytoplankton species, but some are able to survive and grow at unaffected or reduced growth rates, which appears to be independent of the class and phylum of the phytoplankton and their ability to consume components of oil heterotrophically. The goal of this article is to test the role of core metabolism plasticity in the oil-resisting ability of phytoplankton. Experiments were performed on the oil- resistant chlorophyte, Dunaliella tertiolecta, in control and water accommodated fractions of oil, with and without metabolic inhibitors targeting the core metabolic pathways. We observed that inhibiting pathways such as photosynthetic electron transport (PET) and pentose-phosphate pathway were lethal; however, inhibition of pathways such as mitochondrial electron transport and cyclic electron transport caused growth to be arrested. Pathways such as photorespiration and Kreb's cycle appear to play a critical role in the oil-tolerating ability of D. tertiolecta. Analysis of photo-physiology revealed reduced PET under inhibition of photorespiration but not Kreb's cycle. Further studies showed enhanced flux through Kreb's cycle suggesting increased energy production and photorespiration counteract oxidative stress. Lastly, reduced extracellular carbohydrate secretion under oil exposure indicated carbon and energy conservation, which together with enhanced flux through Kreb's cycle played a major role in the survival of D. tertiolecta under oil exposure by meeting the additional energy demands. Overall, we present data that suggest the role of phenotypic plasticity of multiple core metabolic pathways in accounting for the oxidative stress tolerating ability of certain phytoplankton species.
Collapse
Affiliation(s)
- Manoj Kamalanathan
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
- Present address:
Bigelow Laboratory for Ocean SciencesEast BoothbayMaine04544USA
| | - Savannah Mapes
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
- Present address:
Virginia Institute of Marine ScienceGloucester PointVirginia23062USA
| | - Alexandra Prouse
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
| | - Patricia Faulkner
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
| | | | - Jessica Hillhouse
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
| | - David Hala
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
| | - Antonietta Quigg
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
- Department of OceanographyTexas A&M UniversityCollege StationTexas77845USA
| |
Collapse
|
4
|
Blais MA, Matveev A, Lovejoy C, Vincent WF. Size-Fractionated Microbiome Structure in Subarctic Rivers and a Coastal Plume Across DOC and Salinity Gradients. Front Microbiol 2022; 12:760282. [PMID: 35046910 PMCID: PMC8762315 DOI: 10.3389/fmicb.2021.760282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Little is known about the microbial diversity of rivers that flow across the changing subarctic landscape. Using amplicon sequencing (rRNA and rRNA genes) combined with HPLC pigment analysis and physicochemical measurements, we investigated the diversity of two size fractions of planktonic Bacteria, Archaea and microbial eukaryotes along environmental gradients in the Great Whale River (GWR), Canada. This large subarctic river drains an extensive watershed that includes areas of thawing permafrost, and discharges into southeastern Hudson Bay as an extensive plume that gradually mixes with the coastal marine waters. The microbial communities differed by size-fraction (separated with a 3-μm filter), and clustered into three distinct environmental groups: (1) the GWR sites throughout a 150-km sampling transect; (2) the GWR plume in Hudson Bay; and (3) small rivers that flow through degraded permafrost landscapes. There was a downstream increase in taxonomic richness along the GWR, suggesting that sub-catchment inputs influence microbial community structure in the absence of sharp environmental gradients. Microbial community structure shifted across the salinity gradient within the plume, with changes in taxonomic composition and diversity. Rivers flowing through degraded permafrost had distinct physicochemical and microbiome characteristics, with allochthonous dissolved organic carbon explaining part of the variation in community structure. Finally, our analyses of the core microbiome indicated that while a substantial part of all communities consisted of generalists, most taxa had a more limited environmental range and may therefore be sensitive to ongoing change.
Collapse
Affiliation(s)
- Marie-Amélie Blais
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, Canada
| | - Alex Matveev
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, Canada
| | - Connie Lovejoy
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Québec-Océan, Université Laval, Quebec City, QC, Canada
| | - Warwick F Vincent
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
5
|
Putzeys S, Juárez-Fonseca M, Valencia-Agami SS, Mendoza-Flores A, Cerqueda-García D, Aguilar-Trujillo AC, Martínez-Cruz ME, Okolodkov YB, Arcega-Cabrera F, Herrera-Silveira JA, Aguirre-Macedo ML, Pech D. Effects of a Light Crude Oil Spill on a Tropical Coastal Phytoplankton Community. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:55-63. [PMID: 34272966 DOI: 10.1007/s00128-021-03306-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Oiling scenarios following spills vary in concentration and usually can affect large coastal areas. Consequently, this research evaluated different crude oil concentrations (10, 40, and 80 mg L-1) on the nearshore phytoplanktonic community in the southern Gulf of Mexico. This experiment was carried out for ten days using eight units of 2500 L each; factors monitored included shifts in phytoplankton composition, physicochemical parameters and the culturable bacterial abundance of heterotrophic and hydrocarbonoclastic groups. The temperature, salinity, and nutrient concentrations measured were within the ranges previously reported for Yucatan Peninsula waters. The total hydrocarbon concentration (TPH) in the control at T0 indicated the presence of hydrocarbons (PAHs 0.80 μg L-1, aliphatics 7.83 μg L-1 and UCM 184.09 μg L-1). At T0, the phytoplankton community showed a similar assemblage structure and composition in all treatments. At T10, the community composition remained heterogeneous in the control, in agreement with previous reports for the area. However, for oiled treatments, Bacillariophyceae dominated at T10. Hydrocarbonoclastic bacteria were associated with oiled treatments throughout the experiment, while heterotrophic bacteria were associated with control conditions. Our results agreed with previous works at the taxonomic level showing the presence of Bacillariophyceae and Dinophyceae in oil-related treatments, where these groups showed the major interactions in co-occurrence networks. In contrast, Chlorophyceae showed the key node in the co-occurrence network for the control. This study aims to contribute to knowledge on phytoplankton community shifts during a crude oil spill in subtropical oligotrophic regions.
Collapse
Affiliation(s)
- Sébastien Putzeys
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Mérida Unit, Km. 6 Antigua carretera a Progreso, AP 73, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - Miryam Juárez-Fonseca
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Mérida Unit, Km. 6 Antigua carretera a Progreso, AP 73, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Sonia S Valencia-Agami
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Mérida Unit, Km. 6 Antigua carretera a Progreso, AP 73, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Armando Mendoza-Flores
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - Daniel Cerqueda-García
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Mérida Unit, Km. 6 Antigua carretera a Progreso, AP 73, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Ana C Aguilar-Trujillo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Mérida Unit, Km. 6 Antigua carretera a Progreso, AP 73, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Manuel E Martínez-Cruz
- Laboratorio de Botánica Marina y Planctología, Instituto de Ciencias Marinas y Pesquerías (ICIMAP), Universidad Veracruzana, 94294, Boca del Río, Veracruz, Mexico
| | - Yuri B Okolodkov
- Laboratorio de Botánica Marina y Planctología, Instituto de Ciencias Marinas y Pesquerías (ICIMAP), Universidad Veracruzana, 94294, Boca del Río, Veracruz, Mexico
| | - Flor Arcega-Cabrera
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Puerto de Abrigo s/n, 97355, Sisal, Yucatán, Mexico
| | - Jorge A Herrera-Silveira
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Mérida Unit, Km. 6 Antigua carretera a Progreso, AP 73, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - M Leopoldina Aguirre-Macedo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Mérida Unit, Km. 6 Antigua carretera a Progreso, AP 73, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Daniel Pech
- Laboratorio de Biodiversidad Marina y Cambio Climático (BIOMARCCA), El Colegio de la Frontera Sur, 24500, Lerma Campeche, Campeche, Mexico
| |
Collapse
|
6
|
Kamalanathan M, Hillhouse J, Claflin N, Rodkey T, Mondragon A, Prouse A, Nguyen M, Quigg A. Influence of nutrient status on the response of the diatom Phaeodactylum tricornutum to oil and dispersant. PLoS One 2021; 16:e0259506. [PMID: 34851969 PMCID: PMC8635359 DOI: 10.1371/journal.pone.0259506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022] Open
Abstract
Phytoplankton play a central role in our ecosystems, they are responsible for nearly 50 percent of the global primary productivity and major drivers of macro-elemental cycles in the ocean. Phytoplankton are constantly subjected to stressors, some natural such as nutrient limitation and some manmade such as oil spills. With increasing oil exploration activities in coastal zones in the Gulf of Mexico and elsewhere, an oil spill during nutrient-limited conditions for phytoplankton growth is highly likely. We performed a multifactorial study exposing the diatom Phaeodactylum tricornutum (UTEX 646) to oil and/or dispersants under nitrogen and silica limitation as well as co-limitation of both nutrients. Our study found that treatments with nitrogen limitation (-N and–N-Si) showed overall lower growth and chlorophyll a, lower photosynthetic antennae size, lower maximum photosynthetic efficiency, lower protein in exopolymeric substance (EPS), but higher connectivity between photosystems compared to non-nitrogen limited treatments (-Si and +N+Si) in almost all the conditions with oil and/or dispersants. However, certain combinations of nutrient limitation and oil and/or dispersant differed from this trend indicating strong interactive effects. When analyzed for significant interactive effects, the–N treatment impact on cellular growth in oil and oil plus dispersant conditions; and oil and oil plus dispersant conditions on cellular growth in–N-Si and–N treatments were found to be significant. Overall, we demonstrate that nitrogen limitation can affect the oil resistant trait of P. tricornutum, and oil with and without dispersants can have interactive effects with nutrient limitation on this diatom.
Collapse
Affiliation(s)
- Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- * E-mail: ,
| | - Jessica Hillhouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Noah Claflin
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Talia Rodkey
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Andrew Mondragon
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Alexandra Prouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Michelle Nguyen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
7
|
Kamalanathan M, Schwehr KA, Labonté JM, Taylor C, Bergen C, Patterson N, Claflin N, Santschi PH, Quigg A. The Interplay of Phototrophic and Heterotrophic Microbes Under Oil Exposure: A Microcosm Study. Front Microbiol 2021; 12:675328. [PMID: 34408728 PMCID: PMC8366316 DOI: 10.3389/fmicb.2021.675328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Microbial interactions influence nearly one-half of the global biogeochemical flux of major elements of the marine ecosystem. Despite their ecological importance, microbial interactions remain poorly understood and even less is known regarding the effects of anthropogenic perturbations on these microbial interactions. The Deepwater Horizon oil spill exposed the Gulf of Mexico to ∼4.9 million barrels of crude oil over 87 days. We determined the effects of oil exposure on microbial interactions using short- and long-term microcosm experiments with and without Macondo surrogate oil. Microbial activity determined using radiotracers revealed that oil exposure negatively affected substrate uptake by prokaryotes within 8 h and by eukaryotes over 72 h. Eukaryotic uptake of heterotrophic exopolymeric substances (EPS) was more severely affected than prokaryotic uptake of phototrophic EPS. In addition, our long-term exposure study showed severe effects on photosynthetic activity. Lastly, changes in microbial relative abundances and fewer co-occurrences among microbial species were mostly driven by photosynthetic activity, treatment (control vs. oil), and prokaryotic heterotrophic metabolism. Overall, oil exposure affected microbial co-occurrence and/or interactions possibly by direct reduction in abundance of one of the interacting community members and/or indirect by reduction in metabolism (substrate uptake or photosynthesis) of interacting members.
Collapse
Affiliation(s)
- Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Kathleen A Schwehr
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, United States
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Christian Taylor
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, United States
| | - Charles Bergen
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, United States
| | - Nicole Patterson
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, United States
| | - Noah Claflin
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Peter H Santschi
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, United States.,Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States.,Department of Oceanography, Texas A&M University, College Station, TX, United States
| |
Collapse
|
8
|
Melliti Ben Garali S, Sahraoui I, Ben Othman H, Kouki A, de la Iglesia P, Diogène J, Lafabrie C, Andree KB, Fernández-Tejedor M, Mejri K, Meddeb M, Pringault O, Hlaili AS. Capacity of the potentially toxic diatoms Pseudo-nitzschia mannii and Pseudo-nitzschia hasleana to tolerate polycyclic aromatic hydrocarbons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112082. [PMID: 33721579 DOI: 10.1016/j.ecoenv.2021.112082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the effects of polycyclic aromatic hydrocarbons (PAHs) on two potentially toxic Pseudo-nitzschia hasleana and P. mannii, isolated from a PAH contaminated marine environment. Both species, maintained in non-axenic cultures, have been exposed during 144 h to increasing concentrations of a 15 PAHs mixture. Analysis of the domoic acid, showed very low concentrations. Dose-response curves for growth and photosynthesis inhibition were determined. Both species have maintained their growth until the end of incubation even at the highest concentration tested (120 µg l-1), Nevertheless, P mannii showed faster growth and seemed to be more tolerant than P. hasleana. To reduce PAH toxicity, both species have enhanced their biovolume, with a higher increase for P. mannii relative to P hasleana. Both species were also capable of bio-concentrating PAHs and were able to degrade them probably in synergy with their associated bacteria. The highest biodegradation was observed for P. mannii, which could harbored more efficient hydrocarbon-degrading bacteria. This study provides the first evidence that PAHs can control the growth and physiology of potentially toxic diatoms. Future studies should investigate the bacterial community associated with Pseudo-nitzschia species, as responses to pollutants or to other environmental stressors could be strongly influence by associated bacteria.
Collapse
Affiliation(s)
- Sondes Melliti Ben Garali
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, LR18ES41 Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Tunis, Tunisia.
| | - Inès Sahraoui
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, LR18ES41 Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Tunis, Tunisia
| | - Hiba Ben Othman
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia
| | - Abdessalem Kouki
- Laboratoire de Microscopie électronique et de Microanalyse, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia
| | - Pablo de la Iglesia
- Institut de Recherche et Technologie Agroalimentaire (IRTA), Ctra. Poble Nou, Km 5.5, Sant Carles de la Rapita, 43540 Tarragona, Spain
| | - Jorge Diogène
- Institut de Recherche et Technologie Agroalimentaire (IRTA), Ctra. Poble Nou, Km 5.5, Sant Carles de la Rapita, 43540 Tarragona, Spain
| | - Céline Lafabrie
- UMR 9190 MARBEC IRD-Ifremer-CNRS-Université de Montpellier, Place Eugéne Bataillon, Case 093, 34095 Montpellier Cedex 5, France
| | - Karl B Andree
- Institut de Recherche et Technologie Agroalimentaire (IRTA), Ctra. Poble Nou, Km 5.5, Sant Carles de la Rapita, 43540 Tarragona, Spain
| | - Margarita Fernández-Tejedor
- Institut de Recherche et Technologie Agroalimentaire (IRTA), Ctra. Poble Nou, Km 5.5, Sant Carles de la Rapita, 43540 Tarragona, Spain
| | - Kaouther Mejri
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, LR18ES41 Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Tunis, Tunisia
| | - Marouan Meddeb
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, LR18ES41 Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Tunis, Tunisia
| | - Olivier Pringault
- UMR 9190 MARBEC IRD-Ifremer-CNRS-Université de Montpellier, Place Eugéne Bataillon, Case 093, 34095 Montpellier Cedex 5, France; UMR 110 MOI Institut Méditerranéen d'Océanologie, UniversitéAix Marseille, Université de Toulon, CNRS, IRD, Marseille, France
| | - Asma Sakka Hlaili
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, LR18ES41 Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Tunis, Tunisia
| |
Collapse
|
9
|
Quigg A, Parsons M, Bargu S, Ozhan K, Daly KL, Chakraborty S, Kamalanathan M, Erdner D, Cosgrove S, Buskey EJ. Marine phytoplankton responses to oil and dispersant exposures: Knowledge gained since the Deepwater Horizon oil spill. MARINE POLLUTION BULLETIN 2021; 164:112074. [PMID: 33540275 DOI: 10.1016/j.marpolbul.2021.112074] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The Deepwater Horizon oil spill of 2010 brought the ecology and health of the Gulf of Mexico to the forefront of the public's and scientific community's attention. Not only did we need a better understanding of how this oil spill impacted the Gulf of Mexico ecosystem, but we also needed to apply this knowledge to help assess impacts from perturbations in the region and guide future response actions. Phytoplankton represent the base of the food web in oceanic systems. As such, alterations of the phytoplankton community propagate to upper trophic levels. This review brings together new insights into the influence of oil and dispersant on phytoplankton. We bring together laboratory, mesocosm and field experiments, including insights into novel observations of harmful algal bloom (HAB) forming species and zooplankton as well as bacteria-phytoplankton interactions. We finish by addressing knowledge gaps and highlighting key topics for research in novel areas.
Collapse
Affiliation(s)
- Antonietta Quigg
- Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Michael Parsons
- Florida Gulf Coast University, 10501 FGCU Blvd South, Fort Myers, FL 33965, USA.
| | - Sibel Bargu
- Louisiana State University, 1235 Energy, Coast & Environment Building, Baton Rouge, LA 70803, USA.
| | - Koray Ozhan
- Middle East Technical University, P.O. Box 28, 33731 Erdemli, Mersin, Turkey.
| | - Kendra L Daly
- University of South Florida, 140 Seventh Ave S., St. Petersburg, FL 33701, USA.
| | - Sumit Chakraborty
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | - Manoj Kamalanathan
- Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Deana Erdner
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Sarah Cosgrove
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Edward J Buskey
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
10
|
Shiu RF, Vazquez CI, Chiang CY, Chiu MH, Chen CS, Ni CW, Gong GC, Quigg A, Santschi PH, Chin WC. Nano- and microplastics trigger secretion of protein-rich extracellular polymeric substances from phytoplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141469. [PMID: 33113698 DOI: 10.1016/j.scitotenv.2020.141469] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
The substantial increase in plastic pollution in marine ecosystems raises concerns about its adverse impacts on the microbial community. Microorganisms (bacteria, phytoplankton) are important producers of exopolymeric substances (EPS), which govern the processes of marine organic aggregate formation, microbial colonization, and pollutant mobility. Until now, the effects of nano- and micro-plastics on characteristics of EPS composition have received little attention. This study investigated EPS secretion by four phytoplankton species following exposure to various concentrations of polystyrene nano- and microplastics (55 nm nanoparticles; 1 and 6 μm microparticles). The 55 nm nanoparticles induced less growth/survival (determined on a DNA basis) and produced EPS with higher protein-to-carbohydrate (P/C) ratios than the exposure to microplastic particles. The amount of DNA from the four marine phytoplankton showed a higher negative linear correlation with increasing P/C ratios, especially in response to nanoplastic exposure. These results provide evidence that marine phytoplankton are quite sensitive to smaller-sized plastics and actively modify their EPS chemical composition to cope with the stress from pollution. Furthermore, the release of protein-rich EPS was found to facilitate aggregate formation and surface modification of plastic particles, thereby affecting their fate and colonization. Overall, this work offers new insights into the potential harm of different-sized plastic particles and a better understanding of the responding mechanism of marine phytoplankton for plastic pollution. The data also provide needed information about the fate of marine plastics and biogenic aggregation and scavenging processes.
Collapse
Affiliation(s)
- Ruei-Feng Shiu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Carlos I Vazquez
- Bioengineering, School of Engineering, University of California at Merced, Merced, CA 95343, USA
| | - Chang-Ying Chiang
- Bioengineering, School of Engineering, University of California at Merced, Merced, CA 95343, USA
| | - Meng-Hsuen Chiu
- Bioengineering, School of Engineering, University of California at Merced, Merced, CA 95343, USA; National Life Science, Inc., Sacramento, CA 95660, USA; Kaiser Biotech, Inc., Sacramento, CA 95660, USA
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Wen Ni
- Bioengineering, School of Engineering, University of California at Merced, Merced, CA 95343, USA
| | - Gwo-Ching Gong
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA; Department of Oceanography, Texas A&M University, College Station, TX 77843, USA
| | - Peter H Santschi
- Department of Oceanography, Texas A&M University, College Station, TX 77843, USA; Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX 77553, USA
| | - Wei-Chun Chin
- Bioengineering, School of Engineering, University of California at Merced, Merced, CA 95343, USA.
| |
Collapse
|
11
|
Salinas-Whittaker S, Gómez-Gutiérrez CM, Cordero-Esquivel B, Luque PA, Guerra-Rivas G. Effects of the water-soluble fraction of the mixture fuel oil/diesel on the microalgae Dunaliella tertiolecta through growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35148-35160. [PMID: 32583115 DOI: 10.1007/s11356-020-09796-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
There is evidence that water-soluble fraction (WSF) from fuel oil/diesel mixture affects marine microbiota. In order to establish a sequence of WSF effects during microalgal growth, this work aimed to monitor Dunaliella tertiolecta exposed to WSF during 15 days. Three different pigments (chlorophyll a, lutein, and β-carotene) and four metabolites (protein, lipids, fatty acids, and phenols) were studied, and FTIR spectroscopy was used to determine the biomolecular transitions of lipids and their accumulation. The results show that D. tertiolecta triggered a physiological and biochemical response with changes in growth rate, pigments, phenols, lipids, and proteins of the microalga, although fatty acid profile was unaltered. For all the biochemical parameters altered, there were significant differences with the controls. At the end of the assay, exposed D. tertiolecta showed similar values with the control on all the compounds analyzed, except lipids. FTIR absorbance showed an increase in unsaturated acyl chains within the exposed microalgae, giving support for a possible uptake of hydrocarbons from WSF. Variation in pigments and phenol contents is presented as an integrated antioxidant response to the stress imposed by WSF. Overall, this research provides information about the effects of WSF on D. tertiolecta, and the ability of this microalga to recover after long-term exposure to the water-soluble fraction of fuel oil/diesel.
Collapse
Affiliation(s)
- Soledad Salinas-Whittaker
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Colonia Playitas, 22860, Ensenada, Baja California, Mexico
| | - Claudia M Gómez-Gutiérrez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Colonia Playitas, 22860, Ensenada, Baja California, Mexico.
| | - Beatriz Cordero-Esquivel
- Departamento de Acuicultura, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), carretera Ensenada-Tijuana No. 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - Priscy A Luque
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Colonia Playitas, 22860, Ensenada, Baja California, Mexico
| | - Graciela Guerra-Rivas
- Biociencias y Tecnologías, S. A. P. I. de C. V. (BIOCYT), Rincón del Pedregal 31, Pedregal Playitas, Ensenada, 22860, Baja California, Mexico
| |
Collapse
|
12
|
Genzer JL, Kamalanathan M, Bretherton L, Hillhouse J, Xu C, Santschi PH, Quigg A. Diatom aggregation when exposed to crude oil and chemical dispersant: Potential impacts of ocean acidification. PLoS One 2020; 15:e0235473. [PMID: 32634146 PMCID: PMC7340286 DOI: 10.1371/journal.pone.0235473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
Diatoms play a key role in the marine carbon cycle with their high primary productivity and release of exudates such as extracellular polymeric substances (EPS) and transparent exopolymeric particles (TEP). These exudates contribute to aggregates (marine snow) that rapidly transport organic material to the seafloor, potentially capturing contaminants like petroleum components. Ocean acidification (OA) impacts marine organisms, especially those that utilize inorganic carbon for photosynthesis and EPS production. Here we investigated the response of the diatom Thalassiosira pseudonana grown to present day and future ocean conditions in the presence of a water accommodated fraction (WAF and OAWAF) of oil and a diluted chemically enhanced WAF (DCEWAF and OADCEWAF). T. pseudonana responded to WAF/DCEWAF but not OA and no multiplicative effect of the two factors (i.e., OA and oil/dispersant) was observed. T. pseudonana released more colloidal EPS (< 0.7 μm to > 3 kDa) in the presence of WAF/DCEWAF/OAWAF/OADCEWAF than in the corresponding Controls. Colloidal EPS and particulate EPS in the oil/dispersant treatments have higher protein-to-carbohydrate ratios than those in the control treatments, and thus are likely stickier and have a greater potential to form aggregates of marine oil snow. More TEP was produced in response to WAF than in Controls; OA did not influence its production. Polyaromatic hydrocarbon (PAH) concentrations and distributions were significantly impacted by the presence of dispersants but not OA. PAHs especially Phenanthrenes, Anthracenes, Chrysenes, Fluorenes, Fluoranthenes, Pyrenes, Dibenzothiophenes and 1-Methylphenanthrene show major variations in the aggregate and surrounding seawater fraction of oil and oil plus dispersant treatments. Studies like this add to the current knowledge of the combined effects of aggregation, marine snow formation, and the potential impacts of oil spills under ocean acidification scenarios.
Collapse
Affiliation(s)
- Jennifer L. Genzer
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Laura Bretherton
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jessica Hillhouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Chen Xu
- Department of Marine Science, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Peter H. Santschi
- Department of Marine Science, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| |
Collapse
|