Li P, Lu Z, Zou S, Yang L. Marine oil spill photodegradation: Laboratory simulation, affecting factors analysis and kinetic model development.
MARINE POLLUTION BULLETIN 2023;
197:115729. [PMID:
37913562 DOI:
10.1016/j.marpolbul.2023.115729]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Photodegradation significantly influences marine oil spill behavior, yet its role remains underrepresented in current models, impairing predictive accuracy. Addressing this, our study rigorously examined oil properties and environmental determinants affecting marine oil spill photodegradation through laboratory simulations. We identified and quantified key factors and their interactions, noting particularly the positive influence of asphaltene and negative implications of oil density. We also discerned a negative correlation between n-alkane degradation and carbon numbers. Our findings underscored the pivotal roles of temperature and irradiance in photodegradation. All tested oils adhered to first-order kinetics, with rate constants ranging from 0.0348 to 0.0645 day-1. Finally, we introduced a novel model incorporating temperature, irradiance and their interactions, ensuring reasonable simulations for marine oil spill photodegradation, fortifying marine oil spill management strategies.
Collapse