1
|
Wang T, He X, Qi Z, Liu Z, Wang K, Wang Z, Xiong D. Enhancement of oil dispersion and marine oil snow formation by surface-active biomasses from diatom. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106970. [PMID: 39883998 DOI: 10.1016/j.marenvres.2025.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/06/2025] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
Following the Deepwater Horizon oil spill event, the formation of marine oil snow (MOS) has attracted much attention from marine environmental scientists. This study investigates the crude oil dispersion as well as the MOS formation in the presence of Phaeodactylum tricornutum and Chaetoceros sp. through laboratory experiments. Results indicate that oil dispersion is enhanced with the increasing oscillation time and diatom concentration. The P. tricornutum exhibits a more significant facilitation of oil dispersion, indicated by a lower oil-water interfacial tension. When the P. tricornutum concentration reached 1.0×106 cells/mL, the oil dispersion efficiency reached 45.8%, and the volumetric mean diameter of the suspended oil was reduced from 90.6μm to 71.6μm. Diatom viability also affects oil dispersion and MOS formation. The diatom death and cell rupture result in the release of intracellular surface-active lipids and proteins, leading to a further reduction of oil-water interfacial tension and a higher quantity of oil dispersion. Much larger MOS is formed with dead diatoms due to the aggregation of cellular debris by the sticky polysaccharides. The outcomes of this study will add more scientific evidence for further understanding the fate and transport of marine oil spill, and direct the research and development of biological dispersant as an environmental friendly oil spill response technology.
Collapse
Affiliation(s)
- Tian Wang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xiaoan He
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhixin Qi
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Ziyue Liu
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Kaiming Wang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhennan Wang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Deqi Xiong
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
2
|
Magiopoulos I, Chantzaras C, Romano F, Antoniou E, Symiakaki K, Almeda R, Kalantzi I, Mylona K, Parinos C, Pavloudi C, Tsapakis M, Zanaroli G, Kalogerakis N, Pitta P. Is in-situ burning an acceptable mitigation option after a major oil spill? Impact on marine plankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177249. [PMID: 39481571 DOI: 10.1016/j.scitotenv.2024.177249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Major oil spills can impose a significant environmental hazard on the marine ecosystem, and a promising mitigation measure is in-situ oil burning (ISB). However, our knowledge of the impact of the burned residues and soot deposition on the marine ecosystem is still limited. We investigated the effects of burned oil residue and soot deposition on the marine plankton communities of the oligotrophic Eastern Mediterranean Sea with a mesocosm experiment. Three triplicated treatments were tested: (1) Iranian crude oil was added and burned (Burned treatment); (2) soot was collected and deposited with artificial rain (Soot); and (3) a non-contaminated Control. Results revealed that Low Nucleic Acid heterotrophic bacteria, Synechococcus spp., and pigmented pico-nano Eukaryotes (pnEuk) were negatively affected in the Burned and Soot treatments. Viruses, heterotrophic pnEuk and ciliates (in Soot) were crucial for controlling the High Nucleic Acid bacteria. Ciliates and most dinoflagellates showed a negative response to the burned residues but were less affected or were even favored when exposed to soot. Our results show that ISB affected the structure and dynamics of the plankton food web through burned residues and soot depositions. However, since the effects appeared at least three days after the ignition, ISB could be combined with subsequent burned residue collection to minimize its impact on the pelagic ecosystem.
Collapse
Affiliation(s)
- Iordanis Magiopoulos
- Institute of Oceanography, Hellenic Centre for Marine Research, Gournes, Greece; Department of Biology, University of Crete, Heraklion, Greece.
| | | | - Filomena Romano
- Institute of Oceanography, Hellenic Centre for Marine Research, Gournes, Greece.
| | - Eleftheria Antoniou
- School of Mineral Resources Engineering, Technical University of Crete, Chania, Greece; School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece.
| | - Katerina Symiakaki
- Institute of Oceanography, Hellenic Centre for Marine Research, Gournes, Greece.
| | - Rodrigo Almeda
- EOMAR-ECOAQUA, University of Las Palmas de Gran Canaria, Las Palmas, Spain; National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Ioanna Kalantzi
- Institute of Oceanography, Hellenic Centre for Marine Research, Gournes, Greece.
| | - Kyriaki Mylona
- Institute of Oceanography, Hellenic Centre for Marine Research, Gournes, Greece.
| | - Constantine Parinos
- Institute of Oceanography, Hellenic Centre for Marine Research, Anavyssos, Greece.
| | - Christina Pavloudi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Gournes, Greece.
| | - Manolis Tsapakis
- Institute of Oceanography, Hellenic Centre for Marine Research, Gournes, Greece.
| | - Giulio Zanaroli
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Italy.
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece; Institute of GeoEnergy, Foundation for Research and Technology Hellas, Chania, Greece.
| | - Paraskevi Pitta
- Institute of Oceanography, Hellenic Centre for Marine Research, Gournes, Greece.
| |
Collapse
|
3
|
Davis SN, Klumker SM, Mitchell AA, Coppage MA, Labonté JM, Quigg A. Life in the PFAS lane: The impact of perfluoroalkyl substances on photosynthesis, cellular exudates, nutrient cycling, and composition of a marine microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171977. [PMID: 38547969 DOI: 10.1016/j.scitotenv.2024.171977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Perfluoroalkyl substances (PFAS) are of great ecological concern, however, exploration of their impact on bacteria-phytoplankton consortia is limited. This study employed a bioassay approach to investigate the effect of unary exposures of increasing concentrations of PFAS (perfluorooctane sulfonate (PFOS) and 6:2 fluorotelomer sulfonate (6:2 FTS)) on microbial communities from the northwestern Gulf of Mexico. Each community was examined for changes in growth and photophysiology, exudate production and shifts in community structure (16S and 18S rRNA genes). 6:2 FTS did not alter the growth or health of phytoplankton communities, as there were no changes relative to the controls (no PFOS added). On the other hand, PFOS elicited significant phototoxicity (p < 0.05), altering PSII antennae size, lowering PSII connectivity, and decreasing photosynthetic efficiency over the incubation (four days). PFOS induced a cellular protective response, indicated by significant increases (p < 0.001) in the release of transparent exopolymer particles (TEP) compared to the control. Eukaryotic communities (18S rRNA gene) changed substantially (p < 0.05) and to a greater extent than prokaryotic communities (16S rRNA gene) in PFOS treatments. Community shifts were concentration-dependent for eukaryotes, with the low treatment (5 mg/L PFOS) dominated by Coscinodiscophyceae (40 %), and the high treatment (30 mg/L PFOS) marked by a Trebouxiophyceae (50 %) dominance. Prokaryotic community shifts were not concentration dependent, as both treatment levels became depleted in Cyanobacteriia and were dominated by members of the Bacteroidia, Gammaproteobacteria, and Alphaproteobacteria classes. Further, PFOS significantly decreased (p < 0.05) the Shannon diversity and Pielou's evenness across treatments for eukaryotes, and in the low treatment (5 mg/L PFOS) for prokaryotes. These findings show that photophysiology was not impacted by 6:2 FTS but PFOS elicited toxicity that impacted photosynthesis, exudate release, and community composition. This research is crucial in understanding how PFOS impacts microbial communities.
Collapse
Affiliation(s)
- Sarah N Davis
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Shaley M Klumker
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Alexis A Mitchell
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Marshall A Coppage
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA; Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA; Department of Ecology and Conservation Biology, Texas A&M University, 534 John Kimbrough Boulevard, College Station, TX 77843, USA
| |
Collapse
|
4
|
Lou Y, Wang Y, Li S, Yu F, Liu X, Cong Y, Li Z, Jin F, Zhang M, Yao Z, Wang J. Different responses of marine microalgae Phaeodactylum tricornutum upon exposures to WAF and CEWAF of crude oil: A case study coupled with stable isotopic signatures. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133833. [PMID: 38401215 DOI: 10.1016/j.jhazmat.2024.133833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024]
Abstract
Increasing use of chemical dispersants for oil spills highlights the need to understand their adverse effects on marine microalgae and nutrient assimilation because the toxic components of crude oil can be more bioavailable. We employed the crude oil water-accommodated fraction (WAF) and chemically enhanced WAF (CEWAF) to compare different responses in marine microalgae (Phaeodactylum tricornutum) coupled with stable isotopic signatures. The concentration and proportion of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs), which are key toxic components in crude oil, increased after dispersant addition. CEWAF exposure caused higher percent growth inhibition and a lower chlorophyll-a level of microalgae than those after WAF exposure. Compared with WAF exposure, CEWAF led to an enhancement in the self-defense mechanism of P. tricornutum, accompanied by an increased content of extracellular polymeric substances. 13C-depletion and carbon assimilation were altered in P. tricornutum, suggesting more HMW PAHs could be utilized as carbon sources by microalgae under CEWAF. CEWAF had no significant effects on the isotopic fractionation or assimilation of nitrogen in P. tricornutum. Our study unveiled the impact on the growth, physiological response, and nutrient assimilation of microalgae upon WAF and CEWAF exposures. Our data provide new insights into the ecological effects of dispersant applications for coastal oil spills.
Collapse
Affiliation(s)
- Yadi Lou
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ying Wang
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Shiyue Li
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Fuwei Yu
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China; School of Chemical, Dalian University of Technology, Dalian 116024, China
| | - Xing Liu
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yi Cong
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhaochuan Li
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Fei Jin
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Mingxing Zhang
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ziwei Yao
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Juying Wang
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| |
Collapse
|
5
|
Yu L, Xia W, Du H. The toxic effects of petroleum pollutants to microalgae in marine environment. MARINE POLLUTION BULLETIN 2024; 201:116235. [PMID: 38508122 DOI: 10.1016/j.marpolbul.2024.116235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Marine oil pollution is one of the major global environmental pollution problems. Marine microalgae are the foundation of the marine food chain, providing the main primary productivity of the ocean. They not only maintain the energy flow and material cycle of the entire marine ecosystem, but also play an important role in regulating global climate change. Exploring the impact of petroleum pollutants on marine microalgae is extremely important for studying marine environmental pollution. This review first introduced the sources, compositions, and forms of petroleum pollutants and their migration and transformation processes in the ocean. Then, the toxic effects of petroleum pollutants on marine microalgae were summarized. The growth of marine microalgae showed low-concentration promotion and high-concentration inhibition. The population growth and interspecific relationships of marine microalga was changed and the photosynthesis of marine microalgae was influenced. Finally, potential research directions and suggestions for marine microalgae in the future were proposed.
Collapse
Affiliation(s)
- Lili Yu
- College of Education, Zhejiang Normal University, Jinhua 321004, China
| | - Wei Xia
- Faculty of Education, Henan Normal University, Xinxiang 453007, China
| | - Hao Du
- Schol of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
6
|
Genitsaris S, Stefanidou N, Hatzinikolaou D, Kourkoutmani P, Michaloudi E, Voutsa D, Gros M, García-Gómez E, Petrović M, Ntziachristos L, Moustaka-Gouni M. Marine Microbiota Responses to Shipping Scrubber Effluent Assessed at Community Structure and Function Endpoints. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38415986 DOI: 10.1002/etc.5834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
The use of novel high-throughput sequencing (HTS) technologies to examine the responses of natural multidomain microbial communities to scrubber effluent discharges to the marine environment is still limited. Thus, we applied metabarcoding sequencing targeting the planktonic unicellular eukaryotic and prokaryotic fraction (phytoplankton, bacterioplankton, and protozooplankton) in mesocosm experiments with natural microbial communities from a polluted and an unpolluted site. Furthermore, metagenomic analysis revealed changes in the taxonomic and functional dominance of multidomain marine microbial communities after scrubber effluent additions. The results indicated a clear shift in the microbial communities after such additions, which favored bacterial taxa with known oil and polycyclic aromatic hydrocarbons (PAHs) biodegradation capacities. These bacteria exhibited high connectedness with planktonic unicellular eukaryotes employing variable trophic strategies, suggesting that environmentally relevant bacteria can influence eukaryotic community structure. Furthermore, Clusters of Orthologous Genes associated with pathways of PAHs and monocyclic hydrocarbon degradation increased in numbers at treatments with high scrubber effluent additions acutely. These genes are known to express enzymes acting at various substrates including PAHs. These indications, in combination with the abrupt decrease in the most abundant PAHs in the scrubber effluent below the limit of detection-much faster than their known half-lives-could point toward a bacterioplankton-initiated rapid ultimate biodegradation of the most abundant toxic contaminants of the scrubber effluent. The implementation of HTS could be a valuable tool to develop multilevel biodiversity indicators of the scrubber effluent impacts on the marine environment, which could lead to improved impact assessment. Environ Toxicol Chem 2024;00:1-18. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Savvas Genitsaris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Section of Ecology and Taxonomy, School of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Natassa Stefanidou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitris Hatzinikolaou
- Department of Botany, School of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Polyxeni Kourkoutmani
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Michaloudi
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), Girona, Spain
- University of Girona (UdG), Girona, Spain
| | - Elisa García-Gómez
- Catalan Institute for Water Research (ICRA), Girona, Spain
- University of Girona (UdG), Girona, Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Leonidas Ntziachristos
- Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Abou Samra RM, Ali RR. Tracking the behavior of an accidental oil spill and its impacts on the marine environment in the Eastern Mediterranean. MARINE POLLUTION BULLETIN 2024; 198:115887. [PMID: 38064799 DOI: 10.1016/j.marpolbul.2023.115887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/22/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024]
Abstract
The eastern Mediterranean region is a vital hub for oil transportation and production because of its strategic location between Europe, Asia, and Africa. But its unique attributes, including narrow shipping routes, heavy marine traffic, and proximity to vulnerable ecosystems, render it particularly susceptible to accidental oil spills. In this research, an oil spill detection model, along with bathymetric and oceanographic parameters, was used to track oil spills that occurred at the Syrian Baniyas Station in the Eastern Mediterranean on August 23, 2021. Furthermore, the study employed a pairwise comparison matrix (PWCM) to assess the relative importance of wind speed and direction, water depth, and sea surface temperature (SST) in the dispersion of oil spills. Analysis of Sentinel-1 data obtained prior to, during, and after the incident revealed the accumulation of oil slicks along the Syrian coast from Baniyas to Latakia for up to twenty days. The spilled oil reached the coast of Cyprus six days after the incident. The study determined that wind speed and direction played a critical role in the dispersion of spilled oil, while water depth and SST were comparatively less significant factors in this process. The overall accuracy (OA) and Kappa coefficient (KC) for land, water, and oil slick classes derived from the random forest (RF) algorithm ranged from 90 % to 98 % and from 0.86 to 0.98, respectively. The spread of oil slicks at the incident location was revealed by the decorrelation stretch and band ratios of Sentinel-2 MultiSpectral Instrument (MSI) data. The accidental oil spill could have negative effects on the organic carbon cycle, chlorophyll production, and ecosystem productivity. It is essential to consider the vulnerability of specific regions in the Eastern Mediterranean to oil spills when developing adaptation strategies.
Collapse
Affiliation(s)
- Rasha M Abou Samra
- Environmental Sciences Department, Faculty of Science, Damietta University, PO Box 34517, New Damietta City, Egypt.
| | - R R Ali
- Soils and Water Use Department, National Research Centre (NRC), Egypt
| |
Collapse
|
8
|
Ortmann AC, Cobanli SE, Wohlgeschaffen G, Poon HY, Ryther C, Greer CW, Wasserscheid J, Elias M, Robinson B, King TL. Factors that affect water column hydrocarbon concentrations have minor impacts on microbial responses following simulated diesel fuel spills. MARINE POLLUTION BULLETIN 2023; 194:115358. [PMID: 37567129 DOI: 10.1016/j.marpolbul.2023.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Effects of season and mixing on hydrocarbon concentrations and the microbial community response was explored in a series of mesocosm experiments simulating surface spills of diesel into coastal waters. Mixing of any amount contributed to hydrocarbons entering the water column, but diesel fuel composition had a significant effect on hydrocarbon concentrations. Higher initial concentrations of aromatic hydrocarbons resulted in higher water column concentrations, with minimal differences among seasons due to high variability. Regardless of the concentrations of hydrocarbons, prokaryotes increased and there were higher relative abundances of hydrocarbon affiliated bacteria with indications of biodegradation within 4 d of exposure. As concentrations decreased over time, the eukaryote community shifted from the initial community to one which appeared to be composed of organisms with some resilience to hydrocarbons. This series of experiments demonstrates the wide range of conditions under which natural attenuation of diesel fuel is an effective response.
Collapse
Affiliation(s)
- Alice C Ortmann
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada.
| | - Susan E Cobanli
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Gary Wohlgeschaffen
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Ho Yin Poon
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Camilla Ryther
- Dalhousie University, 6299 South Street, Halifax, NS B3H 4R2, Canada
| | - Charles W Greer
- National Research Council of Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave, Montreal, PQ H4P 2R2, Canada
| | - Jessica Wasserscheid
- National Research Council of Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave, Montreal, PQ H4P 2R2, Canada
| | - Miria Elias
- National Research Council of Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave, Montreal, PQ H4P 2R2, Canada
| | - Brian Robinson
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Thomas L King
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| |
Collapse
|
9
|
Parikh H, Patel M, Patel H, Dave G. Assessing diatom distribution in Cambay Basin, Western Arabian Sea: impacts of oil spillage and chemical variables. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:993. [PMID: 37491677 DOI: 10.1007/s10661-023-11603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Freshwater and marine diatoms produce the majority of the oxygen in aquatic systems. Estimates range from 12,000 to 30,000 species, and spatial distribution varies globally. There is significant variation in diatom diversity based on geographical and environmental conditions as well as the physicochemical characteristics of the habitat. Therefore, understanding the underlying factors that contribute to changes in diatom community structures requires a comprehensive understanding of taxons. A study of diatom assemblages from the Cambay Basin, Western Arabian Sea, was conducted, particularly on oil fields. A total of 37 samples were collected; nine were from oil fields. We evaluated micro-oil spills using Fourier transform infrared (FTIR) analysis and microscopic techniques. Correlations were established through the ordination analysis of pernicious physical and chemical water variables (BOD, COD, TDS, pH, temperature, and DO), including principal component analysis (PCA). The oil field sites showed more total dissolved solids (TDS) and chemical oxygen demand (COD) than the respective marine control sites. The study does not display a cause-and-effect relationship, but we observed a positive correlation between increasing silica concentrations and diatom growth in oil fields. In contrast, high aluminium concentrations in oil fields negatively impacted the growth of diatom assemblage and abundance. When surveyed in nine oil fields, we found that Gomphonella pseudosphaerophorum and Nitzschia palea are well adapted to oil concentrations up to 40 ppm.
Collapse
Affiliation(s)
- Hirak Parikh
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Mainavi Patel
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Hardi Patel
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Gayatri Dave
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India.
| |
Collapse
|
10
|
Liu F, Huang Q, Du Y, Li S, Cai M, Huang X, Zheng F, Lin L. The interference of marine accidental and persistent petroleum hydrocarbons pollution on primary biomass and trace elements sink. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163812. [PMID: 37121328 DOI: 10.1016/j.scitotenv.2023.163812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
More than 80 % of the primary biomass in marine environments is provided by phytoplankton. The primary mechanism in the trace element sink is the absorption of trace elements by phytoplankton. Because of their difficult degradability and bioaccumulation, petroleum hydrocarbons are one of the most significant and priority organic contaminants in the marine environment. This study chose Chlorella pyrenoidosa as the model alga to be exposed to short and medium-term petroleum hydrocarbons. The ecological risk of accidental and persistent petroleum hydrocarbon contamination was thoroughly assessed. The interaction and intergenerational transmission of phytoplankton physiological markers and trace element absorption were explored to reflect the change in primary biomass and trace element sink. C. pyrenoidosa could produce a large number of reactive oxygen species stimulated by the concentration and exposure time of pollutants, which activated their antioxidant activity (superoxide dismutase (SOD) activity, β-carotene synthesis, antioxidant trace elements uptake) and peroxides production (hydroxyl radicals and malondialdehyde). The influence of the growth phase on SOD activity, copper absorption, and manganese adsorption in both persistent and accidental pollution was significant (p < 0.05, F > Fα). Adsorption of manganese and selenium positively connected with SOD, malondialdehyde, and Chlorophyl-a (p < 0.01). These findings convincingly indicate that petroleum hydrocarbon contamination can interfere with primary biomass and trace element sinks.
Collapse
Affiliation(s)
- Fengjiao Liu
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Qianyan Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Yanting Du
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Shunxing Li
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
| | - Minggang Cai
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Xuguang Huang
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Fengying Zheng
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Luxiu Lin
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
11
|
Zhou S, Wang W, Xu X. Robust superhydrophobic magnetic melamine sponge inspired by lotus leaf surface for efficient continuous oil-water separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Kamalanathan M, Mapes S, Prouse A, Faulkner P, Klobusnik NH, Hillhouse J, Hala D, Quigg A. Core metabolism plasticity in phytoplankton: Response of Dunaliella tertiolecta to oil exposure. JOURNAL OF PHYCOLOGY 2022; 58:804-814. [PMID: 36056600 PMCID: PMC10087180 DOI: 10.1111/jpy.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Human alterations to the marine environment such as an oil spill can induce oxidative stress in phytoplankton. Exposure to oil has been shown to be lethal to most phytoplankton species, but some are able to survive and grow at unaffected or reduced growth rates, which appears to be independent of the class and phylum of the phytoplankton and their ability to consume components of oil heterotrophically. The goal of this article is to test the role of core metabolism plasticity in the oil-resisting ability of phytoplankton. Experiments were performed on the oil- resistant chlorophyte, Dunaliella tertiolecta, in control and water accommodated fractions of oil, with and without metabolic inhibitors targeting the core metabolic pathways. We observed that inhibiting pathways such as photosynthetic electron transport (PET) and pentose-phosphate pathway were lethal; however, inhibition of pathways such as mitochondrial electron transport and cyclic electron transport caused growth to be arrested. Pathways such as photorespiration and Kreb's cycle appear to play a critical role in the oil-tolerating ability of D. tertiolecta. Analysis of photo-physiology revealed reduced PET under inhibition of photorespiration but not Kreb's cycle. Further studies showed enhanced flux through Kreb's cycle suggesting increased energy production and photorespiration counteract oxidative stress. Lastly, reduced extracellular carbohydrate secretion under oil exposure indicated carbon and energy conservation, which together with enhanced flux through Kreb's cycle played a major role in the survival of D. tertiolecta under oil exposure by meeting the additional energy demands. Overall, we present data that suggest the role of phenotypic plasticity of multiple core metabolic pathways in accounting for the oxidative stress tolerating ability of certain phytoplankton species.
Collapse
Affiliation(s)
- Manoj Kamalanathan
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
- Present address:
Bigelow Laboratory for Ocean SciencesEast BoothbayMaine04544USA
| | - Savannah Mapes
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
- Present address:
Virginia Institute of Marine ScienceGloucester PointVirginia23062USA
| | - Alexandra Prouse
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
| | - Patricia Faulkner
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
| | | | - Jessica Hillhouse
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
| | - David Hala
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
| | - Antonietta Quigg
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
- Department of OceanographyTexas A&M UniversityCollege StationTexas77845USA
| |
Collapse
|
13
|
Yang M, Zhang B, Xin X, Lee K, Chen B. Microplastic and oil pollution in oceans: Interactions and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156142. [PMID: 35609695 DOI: 10.1016/j.scitotenv.2022.156142] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) have been found in oil-polluted oceans, but studies on MPs and oil were still focused on their respective transport, biodegradation, and bioaccumulation. The interactions between MPs and oil in the marine environment remain unknown. MPs would incorporate with oil to form MP-oil agglomerate (MOA), the behaviors of MOA were thus discussed in this study. It was found that the MOA formation resulted in the decreased oil dispersion efficacy and affect marine oil spill response operations. Moreover, oil biodegradation rate would be changed when oil existed as the form of MOA. The slow vertical transport of MOA might lead to wider ocean contamination. MOA would cause much worse impacts on phytoplankton, zooplankton, and high trophic species in the marine environment than MPs or oil individually. MOA assembling with phytoplankton in oceans may reduce carbon dioxide (CO2) transport to deep seas. Exploring the interactions between MPs and oil in the marine environment opened a door for understanding MPs and oil as co-contaminants.
Collapse
Affiliation(s)
- Min Yang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Xiaying Xin
- State Key Laboratory of Marine Pollution (SKLMP), School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
14
|
Passow U, Lee K. Future oil spill response plans require integrated analysis of factors that influence the fate of oil in the ocean. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Cobanli SE, Wohlgeschaffen G, Ryther C, MacDonald J, Gladwell A, Watts T, Greer CW, Elias M, Wasserscheid J, Robinson B, King TL, Ortmann AC. Microbial community response to simulated diluted bitumen spills in coastal seawater and implications for oil spill response. FEMS Microbiol Ecol 2022; 98:6563616. [PMID: 35380637 DOI: 10.1093/femsec/fiac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Abstract
Oil spills in coastal waters can have devastating impacts on local ecosystems, from the microscopic base through to mammals and seabirds. Increasing transport of diluted bitumen, has led to concerns about how this novel product might impact coastal ecosystems. A mesocosm study determined that the type of diluent and the season can affect the concentrations of hydrocarbons entering the water column from a surface spill. Those same mesocosms were sampled to determine if diluent type and season also affected the microbial response a surface spill. Overall, there were no differences in impacts among the three types of diluted bitumen, but there were consistent responses to all products within each season. Although microbial abundances with diluted bitumen rarely differed from unoiled controls, community structure in these organisms shifted in response to hydrocarbons, with hydrocarbon-degrading bacteria becoming more abundant. The relative abundance of heterotrophic eukaryotes also increased with diluted bitumen, with few photosynthetic organisms responding positively to oil. Overall shifts in the microbial communities were minimal relative to spills of conventional oil products, with low concentrations of hydrocarbons in the water column. Oil spill response should focus on addressing the surface slick to prevent sinking or stranding to minimize ecosystem impacts.
Collapse
Affiliation(s)
- Susan E Cobanli
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Canada
| | - Gary Wohlgeschaffen
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Canada
| | | | | | | | | | - Charles W Greer
- National Research Council of Canada, Energy, Mining and Environment Research Centre, Canada
| | - Miria Elias
- National Research Council of Canada, Energy, Mining and Environment Research Centre, Canada
| | - Jessica Wasserscheid
- National Research Council of Canada, Energy, Mining and Environment Research Centre, Canada
| | - Brian Robinson
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Canada
| | - Thomas L King
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Canada
| | - Alice C Ortmann
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Canada
| |
Collapse
|
16
|
Pandey N, Ojha U. Bio‐based polydimethylsiloxane porous sponge materials with programmable hydrophobicity and porosity for efficient separation of hydrophobic liquids from water. J Appl Polym Sci 2022. [DOI: 10.1002/app.51823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Niharika Pandey
- Department of Chemistry Rajiv Gandhi Institute of Petroleum Technology Jais India
| | - Umaprasana Ojha
- Department of Chemistry Rajiv Gandhi Institute of Petroleum Technology Jais India
| |
Collapse
|
17
|
Sweet JA, Bargu S, Morrison WL, Parsons M, Pathare MG, Roberts BJ, Soniat TM, Stauffer BA. Phytoplankton dynamics in Louisiana estuaries: Building a baseline to understand current and future change. MARINE POLLUTION BULLETIN 2022; 175:113344. [PMID: 35124379 DOI: 10.1016/j.marpolbul.2022.113344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Louisiana estuaries are important habitats in the northern Gulf of Mexico, a region undergoing significant and sustained human- and climate-driven changes. This paper synthesizes data collected over multiple years from four Louisiana estuaries - Breton Sound, Terrebonne Bay, the Atchafalaya River Delta Estuary, and Vermilion Bay - to characterize trends in phytoplankton biomass, community composition, and the environmental factors influencing them. Results highlight similarities in timing and composition of maximum chlorophyll, with salinity variability often explaining biomass trends. Distinct drivers for biomass versus community structure were observed in all four estuarine systems. Systems shared a lack of significant correlation between river discharge and overall phytoplankton biomass, while discharge was important for understanding community composition. Temperature was a significant explanatory variable for both biomass and community composition in only one system. These results provide a regional view of phytoplankton dynamics in Louisiana estuaries critical to understanding and predicting the effects of ongoing change.
Collapse
Affiliation(s)
- Julia A Sweet
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA.
| | - Sibel Bargu
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wendy L Morrison
- Louisiana Universities Marine Consortium, Cocodrie, LA 70344, USA
| | - Michael Parsons
- Coastal Watershed Institute, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Mrunmayee G Pathare
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - Brian J Roberts
- Louisiana Universities Marine Consortium, Cocodrie, LA 70344, USA
| | - Thomas M Soniat
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Beth A Stauffer
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| |
Collapse
|
18
|
Putzeys S, Juárez-Fonseca M, Valencia-Agami SS, Mendoza-Flores A, Cerqueda-García D, Aguilar-Trujillo AC, Martínez-Cruz ME, Okolodkov YB, Arcega-Cabrera F, Herrera-Silveira JA, Aguirre-Macedo ML, Pech D. Effects of a Light Crude Oil Spill on a Tropical Coastal Phytoplankton Community. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:55-63. [PMID: 34272966 DOI: 10.1007/s00128-021-03306-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Oiling scenarios following spills vary in concentration and usually can affect large coastal areas. Consequently, this research evaluated different crude oil concentrations (10, 40, and 80 mg L-1) on the nearshore phytoplanktonic community in the southern Gulf of Mexico. This experiment was carried out for ten days using eight units of 2500 L each; factors monitored included shifts in phytoplankton composition, physicochemical parameters and the culturable bacterial abundance of heterotrophic and hydrocarbonoclastic groups. The temperature, salinity, and nutrient concentrations measured were within the ranges previously reported for Yucatan Peninsula waters. The total hydrocarbon concentration (TPH) in the control at T0 indicated the presence of hydrocarbons (PAHs 0.80 μg L-1, aliphatics 7.83 μg L-1 and UCM 184.09 μg L-1). At T0, the phytoplankton community showed a similar assemblage structure and composition in all treatments. At T10, the community composition remained heterogeneous in the control, in agreement with previous reports for the area. However, for oiled treatments, Bacillariophyceae dominated at T10. Hydrocarbonoclastic bacteria were associated with oiled treatments throughout the experiment, while heterotrophic bacteria were associated with control conditions. Our results agreed with previous works at the taxonomic level showing the presence of Bacillariophyceae and Dinophyceae in oil-related treatments, where these groups showed the major interactions in co-occurrence networks. In contrast, Chlorophyceae showed the key node in the co-occurrence network for the control. This study aims to contribute to knowledge on phytoplankton community shifts during a crude oil spill in subtropical oligotrophic regions.
Collapse
Affiliation(s)
- Sébastien Putzeys
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Mérida Unit, Km. 6 Antigua carretera a Progreso, AP 73, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - Miryam Juárez-Fonseca
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Mérida Unit, Km. 6 Antigua carretera a Progreso, AP 73, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Sonia S Valencia-Agami
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Mérida Unit, Km. 6 Antigua carretera a Progreso, AP 73, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Armando Mendoza-Flores
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - Daniel Cerqueda-García
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Mérida Unit, Km. 6 Antigua carretera a Progreso, AP 73, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Ana C Aguilar-Trujillo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Mérida Unit, Km. 6 Antigua carretera a Progreso, AP 73, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Manuel E Martínez-Cruz
- Laboratorio de Botánica Marina y Planctología, Instituto de Ciencias Marinas y Pesquerías (ICIMAP), Universidad Veracruzana, 94294, Boca del Río, Veracruz, Mexico
| | - Yuri B Okolodkov
- Laboratorio de Botánica Marina y Planctología, Instituto de Ciencias Marinas y Pesquerías (ICIMAP), Universidad Veracruzana, 94294, Boca del Río, Veracruz, Mexico
| | - Flor Arcega-Cabrera
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Puerto de Abrigo s/n, 97355, Sisal, Yucatán, Mexico
| | - Jorge A Herrera-Silveira
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Mérida Unit, Km. 6 Antigua carretera a Progreso, AP 73, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - M Leopoldina Aguirre-Macedo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Mérida Unit, Km. 6 Antigua carretera a Progreso, AP 73, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Daniel Pech
- Laboratorio de Biodiversidad Marina y Cambio Climático (BIOMARCCA), El Colegio de la Frontera Sur, 24500, Lerma Campeche, Campeche, Mexico
| |
Collapse
|
19
|
Ghasemi S, Javid AH, Farsad F, Robati M, Farshchi P. An evaluation of the marine environmental resilience to the north of Qeshm Island. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:859. [PMID: 34855014 DOI: 10.1007/s10661-021-09627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
There is always an adamant need to comprehend and draw the complex challenges of sustainability in order to help organize studies, due to the increasing human-related pressures on coastal zones. Hence, by formulating such a comprehensive framework, it could be possible to anticipate changes and support managerial decisions, as well as the degree of resilience of the region's environment. One of the approaches utilized in littoral or coastal zones is the conceptual framework of drivers, pressure, status, impact, and responses (DPSIR)..Qeshm Island, the largest island in the Persian Gulf, is accounted for being the most vital and strategic areas of the mentioned region. In recent decades, Qeshm has become one of the major cultural, natural, geological, and tourism hubs of the country due to its unique regional characteristics, along with its biodiversity and environmental sensitivity. Thereby, in the present research, a combined approach shall be followed to explore the resilience of the marine environment on the northern coast of Qeshm Island by taking advantage of the socioeconomic criterion. In this respect, the conceptual framework of the DPSIR model is utilized in combination with the structural equation model (SEM-PLS) (or partial least squares), which is one of the nonexperimental techniques, to quantify the results in the best manner possible. On the basis of the fuzzy cognitive map (FCM), the regional economic index bearing the weights of 0.62, 0.62, and 0.5, along with an institutional-managerial and biological index, respectively, denotes a two-way positive correlation, whereas this factor has a two-way, but adverse correlation, relationship with a weight of 0.65 in terms of the sociocultural index. Similarly, there is also a one-way and negative relationship, as to the economic index, with a weight of 0.69 which is in relevance with the physio-chemical index.
Collapse
Affiliation(s)
- Sarvin Ghasemi
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Javid
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Forough Farsad
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Robati
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parvin Farshchi
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Kamalanathan M, Hillhouse J, Claflin N, Rodkey T, Mondragon A, Prouse A, Nguyen M, Quigg A. Influence of nutrient status on the response of the diatom Phaeodactylum tricornutum to oil and dispersant. PLoS One 2021; 16:e0259506. [PMID: 34851969 PMCID: PMC8635359 DOI: 10.1371/journal.pone.0259506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022] Open
Abstract
Phytoplankton play a central role in our ecosystems, they are responsible for nearly 50 percent of the global primary productivity and major drivers of macro-elemental cycles in the ocean. Phytoplankton are constantly subjected to stressors, some natural such as nutrient limitation and some manmade such as oil spills. With increasing oil exploration activities in coastal zones in the Gulf of Mexico and elsewhere, an oil spill during nutrient-limited conditions for phytoplankton growth is highly likely. We performed a multifactorial study exposing the diatom Phaeodactylum tricornutum (UTEX 646) to oil and/or dispersants under nitrogen and silica limitation as well as co-limitation of both nutrients. Our study found that treatments with nitrogen limitation (-N and–N-Si) showed overall lower growth and chlorophyll a, lower photosynthetic antennae size, lower maximum photosynthetic efficiency, lower protein in exopolymeric substance (EPS), but higher connectivity between photosystems compared to non-nitrogen limited treatments (-Si and +N+Si) in almost all the conditions with oil and/or dispersants. However, certain combinations of nutrient limitation and oil and/or dispersant differed from this trend indicating strong interactive effects. When analyzed for significant interactive effects, the–N treatment impact on cellular growth in oil and oil plus dispersant conditions; and oil and oil plus dispersant conditions on cellular growth in–N-Si and–N treatments were found to be significant. Overall, we demonstrate that nitrogen limitation can affect the oil resistant trait of P. tricornutum, and oil with and without dispersants can have interactive effects with nutrient limitation on this diatom.
Collapse
Affiliation(s)
- Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- * E-mail: ,
| | - Jessica Hillhouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Noah Claflin
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Talia Rodkey
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Andrew Mondragon
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Alexandra Prouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Michelle Nguyen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
21
|
Kamalanathan M, Schwehr KA, Labonté JM, Taylor C, Bergen C, Patterson N, Claflin N, Santschi PH, Quigg A. The Interplay of Phototrophic and Heterotrophic Microbes Under Oil Exposure: A Microcosm Study. Front Microbiol 2021; 12:675328. [PMID: 34408728 PMCID: PMC8366316 DOI: 10.3389/fmicb.2021.675328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Microbial interactions influence nearly one-half of the global biogeochemical flux of major elements of the marine ecosystem. Despite their ecological importance, microbial interactions remain poorly understood and even less is known regarding the effects of anthropogenic perturbations on these microbial interactions. The Deepwater Horizon oil spill exposed the Gulf of Mexico to ∼4.9 million barrels of crude oil over 87 days. We determined the effects of oil exposure on microbial interactions using short- and long-term microcosm experiments with and without Macondo surrogate oil. Microbial activity determined using radiotracers revealed that oil exposure negatively affected substrate uptake by prokaryotes within 8 h and by eukaryotes over 72 h. Eukaryotic uptake of heterotrophic exopolymeric substances (EPS) was more severely affected than prokaryotic uptake of phototrophic EPS. In addition, our long-term exposure study showed severe effects on photosynthetic activity. Lastly, changes in microbial relative abundances and fewer co-occurrences among microbial species were mostly driven by photosynthetic activity, treatment (control vs. oil), and prokaryotic heterotrophic metabolism. Overall, oil exposure affected microbial co-occurrence and/or interactions possibly by direct reduction in abundance of one of the interacting community members and/or indirect by reduction in metabolism (substrate uptake or photosynthesis) of interacting members.
Collapse
Affiliation(s)
- Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Kathleen A Schwehr
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, United States
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Christian Taylor
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, United States
| | - Charles Bergen
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, United States
| | - Nicole Patterson
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, United States
| | - Noah Claflin
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Peter H Santschi
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, United States.,Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States.,Department of Oceanography, Texas A&M University, College Station, TX, United States
| |
Collapse
|