1
|
Veríssimo SN, Paiva VH, Cunha SC, Cerveira LR, Fernandes JO, Pereira JM, Ramos JA, Dos Santos I, Norte AC. Physiology and fertility of two gull species in relation to plastic additives' exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175128. [PMID: 39084383 DOI: 10.1016/j.scitotenv.2024.175128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Understanding the impact of plastic and its additives on wild species is crucial as their presence in the environment increases. Polybrominated diphenyl ethers (PBDEs), once used as flame retardants, were restricted due to known toxic effects, but are still detected in the environment. Naturally occurring methoxylated PBDEs (MeO-BDEs) can result from PBDE transformation and may cause similar hazardous effects. Yellow-legged gulls (Larus michahellis, YLG) and Audouin's gulls (Ichthyaetus audouinii, AG) are highly susceptible to plastic additives, due to their distribution, trophic position, and behaviour. In this study, we assessed PBDEs and MeO-BDEs uptake in different tissues and their effects on physiological and reproductive parameters. Findings indicate that, apart from annual differences, adult AG accumulated more MeO-BDEs than YLG in a natural breeding habitat (Deserta), while the latter had lower PBDE levels than YLG breeding in the city of Porto. In relation to chicks, only YLG from Deserta showed higher PBDE concentrations than AG chicks. Individual analysis of each physiological parameter revealed impacts only for adult YLG from Deserta, with neurofunction and immune system inhibition at higher MeO-BDE concentrations. For chicks, AG showed impaired neurofunction, while YLG chicks from Porto exhibited potential genotoxicity effects triggered by higher MeO-BDE levels. Overall health analysis showed activation of antioxidant defences and compromised immune system in YLG adults from Porto due to high values of PBDEs, while chicks from Deserta exhibited inflammation and oxidative stress with high concentrations of MeO-BDEs in the same species. Fertility parameters showed significant differences for sperm counts though suggesting individuals may be able to compensate any exposure effects. This study confirms the widespread presence of plastic-associated compounds and their harmful effects on gulls, particularly on neurofunction, immune system, oxidative balance and fertility, especially due to the presence of MeO-BDEs.
Collapse
Affiliation(s)
- S N Veríssimo
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - V H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - S C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - L R Cerveira
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - J O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - J M Pereira
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - J A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - I Dos Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Littoral Environnement et Sociétés (LIENSs), La Rochelle University - CNRS, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - A C Norte
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
2
|
Gonkowski S, Tzatzarakis M, Vakonaki E, Meschini E, Könyves L, Rytel L. Concentration levels of phthalate metabolites in wild boar hair samples. Sci Rep 2024; 14:17228. [PMID: 39060311 PMCID: PMC11282317 DOI: 10.1038/s41598-024-68131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Phthalates used in the industry penetrate the environment and negatively affect humans and animals. Hair samples seem to be the best matrix for studies on long-term exposure to phthalates, but till now they were used only in investigations on humans. Moreover, the knowledge of the wild terrestrial animal exposure to phthalates is extremely limited. This study aimed to establish of concentration levels of selected phthalate metabolites (i.e. monomethyl phthalate-MMP, monoethyl phthalate-MEP, mono-isobutyl phthalate-MiBP, monobutyl phthalate-MBP, monobenzyl phthalate-MBzP, mono-cyclohexyl phthalate-MCHP, mono(2-ethylhexyl) phthalate-MEHP and mono-n-octyl phthalate-MOP) in wild boar hair samples using liquid chromatography with mass spectrometry (LC-MS) analysis. MEHP was noted in 90.7% of samples with mean 66.17 ± 58.69 pg/mg (median 49.35 pg/mg), MMP in 59.3% with mean 145.1 ± 310.6 pg/mg (median 64.45 pg/mg), MiBP in 37.0% with mean 56.96 ± 119.4 pg/mg (median < limit of detection-LOD), MBP in 35.2% with mean 19.97 ± 34.38 pg/mg (median < LOD) and MBzP in 1.9% with concentration below limit of quantification. MEP, MCHP, and MOP have not been found in wild boar hair samples during this study. The results have shown that wild boars are exposed to phthalates and hair samples may be used as a matrix during studies on levels of phthalate metabolites in wild animals.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957, Olsztyn, Poland
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Elena Meschini
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - László Könyves
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Liliana Rytel
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 14, 10-718, Olsztyn, Poland.
| |
Collapse
|
3
|
Billings A, Jones KC, Pereira MG, Spurgeon DJ. Emerging and legacy plasticisers in coastal and estuarine environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168462. [PMID: 37963532 DOI: 10.1016/j.scitotenv.2023.168462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
The occurrence of plastic waste in the environment is an emerging and ongoing concern. In addition to the physical impacts of macroplastics and microplastics on organisms, the chemical effects of plastic additives such as plasticisers have also received increasing attention. Research concerning plasticiser pollution in estuaries and coastal environments has been a particular focus, as these environments are the primary entry point for anthropogenic contaminants into the wider marine environment. Additionally, the conditions in estuarine environments favour the sedimentation of suspended particulate matter, with which plasticisers are strongly associated. Hence, estuary systems may be where some of the highest concentrations of these pollutants are seen in freshwater and marine environments. Recent studies have confirmed emerging plasticisers and phthalates as pollutants in estuaries, with the relative abundance of these compounds controlled primarily by patterns of use, source intensity, and fate. Plasticiser profiles are typically dominated by mid-high molecular weight compounds such as DnBP, DiBP, and DEHP. Plasticisers may be taken up by estuarine and marine organisms, and some phthalates can cause negative impacts in marine organisms, although further research is required to assess the impacts of emerging plasticisers. This review provides an overview of the processes controlling the release and partitioning of emerging and legacy plasticisers in aqueous environments, in addition to the sources of plasticisers in estuarine and coastal environments. This is followed by a quantitative analysis and discussion of literature concerning the (co-)occurrence and concentrations of emerging plasticisers and phthalates in these environments. We end this review with a discussion the fate (degradation and uptake by biota) of these compounds, in addition to identification of knowledge gaps and recommendations for future research.
Collapse
Affiliation(s)
- Alex Billings
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - M Glória Pereira
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - David J Spurgeon
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
4
|
PHTHALATE ESTERS (PLASTICIZERS) IN THE UROPYGIAL GLAND AND THEIR RELATIONSHIP TO PLASTICS INGESTION IN SEABIRDS ALONG THE COAST OF ESPÍRITO SANTO, EASTERN BRAZIL. J Zoo Wildl Med 2023; 53:733-743. [PMID: 36640075 DOI: 10.1638/2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
Plastic ingestion is a problem for seabirds worldwide. In addition to direct health effects such as obstruction or perforation of the gastrointestinal tract, plastic ingestion can also lead to indirect health effects through the release of chemicals that may be absorbed and cause systemic and chronic toxicity. Among chemicals that can be released by plastics are phthalate esters, a group of chemicals widely used as plasticizers or additives to change the physical characteristics of plastics. In this study, three phthalate esters, dimethyl phthalate (DMP), dibuthyl phthalate (DBP), and diethylhexyl phthalate (DEHP), were quantified in the uropygial gland of 48 seabirds from 16 species collected ashore in a tropical region, the coast of Espírito Santo, Eastern Brazil. Including trace levels, DMP was detected in 16 birds (33%) from 10 species, with an average concentration of 0.014 ± 0.005 ng/µl (mean ± SD for individuals with concentrations above the practical level of detection of 0.01 ng/µl). DBP was detected in 15 birds (31%) from 11 species, with an average concentration of 0.049 ± 0.032 ng/µl. DEHP was detected in 21 birds (44%) from 11 species, with an average concentration of 0.115 ± 0.105 ng/µl. DMP concentration in the uropygial gland was positively associated with the presence, number, and mass of plastic items in the upper digestive tract. However, no such relationship was noted for DBP nor DEHP, suggesting the concentration of phthalate compounds in the uropygial gland might not always serve as a reliable proxy for plastic ingestion. In spite of relatively high frequencies of detection, the low concentrations of phthalates detected in this study suggest levels of exposure below known toxicity thresholds. Further studies on the potential adverse effects of phthalate exposure in seabirds are necessary, especially on the reproductive development of embryos and chicks.
Collapse
|
5
|
Abstract
Microplastic debris is a persistent, ubiquitous global pollutant in oceans, estuaries, and freshwater systems. Some of the highest reported concentrations of microplastics, globally, are in the Gulf of Mexico (GoM), which is home to the majority of plastic manufacturers in the United States. A comprehensive understanding of the risk microplastics pose to wildlife is critical to the development of scientifically sound mitigation and policy initiatives. In this review, we synthesize existing knowledge of microplastic debris in the Gulf of Mexico and its effects on birds and make recommendations for further research. The current state of knowledge suggests that microplastics are widespread in the marine environment, come from known sources, and have the potential to be a major ecotoxicological concern for wild birds, especially in areas of high concentration such as the GoM. However, data for GoM birds are currently lacking regarding typical microplastic ingestion rates uptake of chemicals associated with plastics by avian tissues; and physiological, behavioral, and fitness consequences of microplastic ingestion. Filling these knowledge gaps is essential to understand the hazard microplastics pose to wild birds, and to the creation of effective policy actions and widespread mitigation measures to curb this emerging threat to wildlife.
Collapse
|