1
|
Zong C, Zhu L, Jabeen K, Li C, Wei N, Wang X, Dong X, Li D. Vertical distribution of microplastics in the Western Pacific Warm Pool: In situ results comparison of different sampling method. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135722. [PMID: 39243537 DOI: 10.1016/j.jhazmat.2024.135722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Marine microplastics (MPs) are recognized as a growing severe environmental concern. The vertical distribution pattern of MPs in the ocean is still elusive. Meanwhile, different sampling methods have been deployed in previous studies, resulting in difficulties in compiling data. In this study, for the first time, we explored ocean interior MP pollution in the Western Pacific Warm Pool simultaneously using both a CTD (Conductivity-temperature-depth) sampler and a large-volume in-situ filtration system. At the same sampling station, the average abundance of microplastics in the water column obtained by the two sampling methods was 0.37 ± 0.44 n/m3 (in-situ filtration) and 115.12 ± 64.13 n/m3 (CTD), respectively, which showed significant differences. Both methods found that the main chemical composition and shape of MPs were PET and fiber. Ocean current was identified as the dominant factor that impacted the horizontal distribution of MPs in the study area. The abundance of MPs in the surface layer was 5.4-703.8 times higher than that of the water column. The similar physical and chemical properties of MPs in the surface water and water column indicated that MPs in the water column originate from the sustained release from the surface layer.
Collapse
Affiliation(s)
- Changxing Zong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China.
| | - Khalida Jabeen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Changjun Li
- Ocean School, Yantai University, Yantai 264005, China
| | - Nian Wei
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Xinghuo Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Xuri Dong
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| |
Collapse
|
2
|
Egami K, Miyazono K, Yamashita R, Wakabayashi K, Kodama T, Takahashi K. Use of pelagic tunicate Salpa fusiformis as biological sampler to estimate in-situ density of microplastics smaller than 330 μm. MARINE POLLUTION BULLETIN 2024; 206:116756. [PMID: 39059222 DOI: 10.1016/j.marpolbul.2024.116756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
While microplastics (MPs) have emerged as a significant threat, information on MPs <330 μm (SMPs) is limited by the lack of simple quantification methods. We examined the potential application of salps, non-selective filter-feeding tunicates, to estimate in-situ SMP densities. After collection, salp guts were dissected, dissolved, and filtered to analyze MPs using μFTIR. The results showed each gut samples contained 1.96 ± 1.49 MP particles; their polymer composition and size were consistent with those in ambient seawater. When the SMP quantity in salp gut was converted to in-situ densities using previously published feeding parameters, SMP densities ranged between 235 and 1209 particles/m3; they were strongly correlated with those in seawater. Importantly, this method, which is less labor intensive than other methods, could easily characterize in-situ SMP distribution of different marine environments, thus improve the monitoring of their pollution. Furthermore, it could be applied to examine historical contributions of SMPs using archived salp samples.
Collapse
Affiliation(s)
- Kengo Egami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo, Japan
| | - Kentaro Miyazono
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo, Japan
| | - Rei Yamashita
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa, Chiba, Japan
| | - Kaori Wakabayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4, Kagamiyama, Higashi-hiroshima, Hiroshima, Japan
| | - Taketoshi Kodama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo, Japan
| | - Kazutaka Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo, Japan.
| |
Collapse
|
3
|
Bucci S, Richon C, Bakels L. Exploring the Transport Path of Oceanic Microplastics in the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14338-14347. [PMID: 39078311 PMCID: PMC11325545 DOI: 10.1021/acs.est.4c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Microplastics (MP) have been recognized as an emerging atmospheric pollutant, yet uncertainties persist in their emissions and concentrations. With a bottom-up approach, we estimate 6-hourly MP fluxes at the ocean-atmosphere interface, using as an input the monthly ocean surface MP concentrations simulated by the global oceanic model (NEMO/PISCES-PLASTIC, Nucleus for European Modeling of the Ocean, Pelagic Interaction Scheme for Carbon and Ecosystem Studies), a size distribution estimate for the MP in the micrometer range, and a sea salt emission scheme. The atmospheric dispersion is then simulated with the Lagrangian model FLEXPART. We identify hotspot sources in the tropical regions and highlight the seasonal variability of emissions, atmospheric concentrations, and deposition fluxes both on land and ocean surfaces. Due to the variability of MP concentration during the year, the MP flux from the sea surface appears to follow a seasonality opposite to that of sea salt aerosol emissions. The comparison with existing observations of MP in the marine atmosphere suggests an underestimation of one to 2 orders of magnitude in our current knowledge of the MP in the oceans' surface. In addition, we show that the MP in the micrometer range is transported efficiently around the globe and can penetrate and linger in the stratosphere over time scales of months. The interaction of these particles with the chemistry and physics of the atmosphere is still mostly unknown and deserves to be further investigated.
Collapse
Affiliation(s)
- Silvia Bucci
- Department of Meteorology and Geophysics, University of Vienna, Universitätsring 1, Vienna 1010, Austria
| | - Camille Richon
- Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, Institut Pierre Simon Laplace (LOCEAN-IPSL), Sorbonne Université, CNRS, IRD, MNHN, 75005 Paris, France
- Laboratoire d'Océanographie Physique et Spatiale (LOPS), UMR 197 CNRS/IFREMER/IRD/UBO, Institut Universitaire Européen de la Mer, Plouzané 29280, France
| | - Lucie Bakels
- Department of Meteorology and Geophysics, University of Vienna, Universitätsring 1, Vienna 1010, Austria
| |
Collapse
|
4
|
Shugart GW, Waters CL, FitzPatrick JD, Kaler RSA, Vlietstra LS. Short-tailed shearwater (Ardenna tenuirostris) plastic loads and particle dimensions exhibit spatiotemporal similarity in the Pacific Ocean. MARINE POLLUTION BULLETIN 2023; 192:115038. [PMID: 37207390 DOI: 10.1016/j.marpolbul.2023.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
Short-tailed shearwater (Ardenna tenuirostris) stomach contents provide some of the earliest documentation of oceanic plastic pollution, one of the longer data series of seabird stomach samples, and the species' wide range in the North and South Pacific provides comparative data for the Pacific Ocean. A mortality event in the North Pacific in 2019 provided additional data for spatiotemporal comparisons. In the North Pacific the percent occurrence, mass, and number of pieces were similar since the first records in the 1970s. Particle size increased slightly reflecting a transition from uniform pre-manufactured pellets in initial reports to irregular user fragments in recent reports. Contemporary North and South Pacific plastic loads and particle dimensions were similar. A lack of temporal or spatial difference affirms previous conclusions that plastic retained in short-tailed shearwaters and other Procellariiformes is related to body size, gastrointestinal structure, and species' preferences rather than the availability of oceanic plastic.
Collapse
Affiliation(s)
- Gary W Shugart
- Slater Museum of Natural History, University of Puget Sound, Tacoma, WA, United States of America.
| | - Cheyenne L Waters
- Department of Marine Science, U.S. Coast Guard Academy, New London, CT, United States of America
| | - John D FitzPatrick
- Department of Marine Science, U.S. Coast Guard Academy, New London, CT, United States of America
| | - Robert S A Kaler
- U.S. Fish and Wildlife Service, Anchorage, AK, United States of America
| | - Lucy S Vlietstra
- Department of Marine Science, U.S. Coast Guard Academy, New London, CT, United States of America
| |
Collapse
|
5
|
Valderrama-Herrera M, Cardenas SA, Calvo-Mac C, Celi-Vértiz RG, Chumpitaz-Levano VL, Flores-Miranda WE, Lopez-Tirado ZMT, Molina-Alvarez M, Rubio-Cheon DN, Trucios-Castro M, Fernández Severini MD, Forero López AD, Ramos W, Pretell V, Castro IB, Ribeiro VV, Dobaradaran S, Espinoza-Morriberón D, Ben-Haddad M, Dioses-Salinas DC, De-la-Torre GE. Rajids ovipositing on marine litter: A potential threat to their survival. MARINE POLLUTION BULLETIN 2023; 191:114941. [PMID: 37080019 DOI: 10.1016/j.marpolbul.2023.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Marine litter is a complex environmental issue threatening the well-being of multiple organisms. In the present study, we present an overlooked pathway by which marine litter interaction with certain ovigerous skates (Family: Rajidae) communities could compromise their survival. We propose that skates from the genus Sympterygia deposit their egg capsules on marine litter substrates by accident, which are then washed ashore still unhatched. We conducted 10 monitoring surveys on three beaches of La Libertad Region, on the north coast of Peru, looking for marine litter conglomerates to determine the presence of egg capsules. We registered a total of 75 marine litter conglomerates, containing 1595 egg capsules, out of which only 15.9 % were presumably hatched, and 15.8 % were still fresh. Fishing materials were identified as the main item in marine litter conglomerates. We conclude that this behavior could contribute to the decline of Sympterygia communities, although further research is needed.
Collapse
Affiliation(s)
| | - Sara Amada Cardenas
- ONG Conservacción, Calle Ugarte y Moscoso 535, San Isidro, Lima, Peru; Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru
| | - Carlos Calvo-Mac
- ONG Conservacción, Calle Ugarte y Moscoso 535, San Isidro, Lima, Peru
| | | | | | | | | | | | | | | | - Melisa D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina
| | - Ana D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina
| | - Williams Ramos
- Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 25, Lima, Peru
| | - Victor Pretell
- Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 25, Lima, Peru
| | - Italo B Castro
- Institute of Oceanography, Universidade Federal Do Rio Grande, Brazil; Instituto do Mar Universidade Federal de São Paulo, Santos, SP 11070, Brazil
| | | | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Dante Espinoza-Morriberón
- Universidad Tecnológica del Perú (UTP), Facultad de Ingeniería, Jirón Hernán Velarde 260, Cercado de Lima, 15046 Lima, Peru; Universidad Científica del Sur, Facultad de Ciencias Veterinarias y Biológicas, Carrera de Biología Marina, Antigua Panamericana Sur Km. 19, Villa El Salvador, Lima, Peru
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | | | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| |
Collapse
|
6
|
Thushari GGN, Miyazono K, Sato T, Yamashita R, Takasuka A, Watai M, Yasuda T, Kuroda H, Takahashi K. Floating plastic accumulation and distribution around Kuroshio Current, western North Pacific. MARINE POLLUTION BULLETIN 2023; 188:114604. [PMID: 36706546 DOI: 10.1016/j.marpolbul.2023.114604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
The distribution of floating plastic debris around the Kuroshio Current which transports plastics from the coastal waters of Asian countries to North Pacific subtropical gyre, was investigated in 2014. The mean abundance and weight of plastic debris on the sea surface were 100,376 counts/km2 and 446.16 g/km2, respectively. Intensive plastic accumulation was observed in the frontal area between the northern edge of the Kuroshio and coastal waters off Shikoku, while a relatively higher abundance in the south of Kuroshio was generally associated with anticyclonic mesoscale eddies. Such an accumulation resulted from the eddy-Kuroshio interactions which are specifically associated with the offshore non-large meandering Kuroshio path. Overall, white, fragmented, small-sized (≤1 mm) particles with polyethylene and polypropylene polymers were dominant. In the southern area of Kuroshio, the contribution of polystyrene and larger-sized plastic was higher, suggesting a rapid influx of fresh particles from western Japan to offshore by the northwest monsoon.
Collapse
Affiliation(s)
- Gajahin Gamage Nadeeka Thushari
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Department of Animal Science, Faculty of Animal Science & Export Agriculture, Uva Wellassa University, Passara Road, Badulla 90 000, Sri Lanka.
| | - Kentaro Miyazono
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Sato
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Rei Yamashita
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba 277-8564, Japan
| | - Akinori Takasuka
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mikio Watai
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Tohya Yasuda
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Hiroshi Kuroda
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 116 Katsurakoi, Kushiro, Hokkaido 085-0802, Japan
| | - Kazutaka Takahashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|