1
|
Alifia L, Zulaika E, Soeprijanto S, Hamzah A, Luqman A. Microbial diversity and biotechnological potential of mangrove leaf litter in Kebun Raya Mangrove, Surabaya, Indonesia. BRAZ J BIOL 2025; 84:e288968. [PMID: 39907343 DOI: 10.1590/1519-6984.288968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/29/2024] [Indexed: 02/06/2025] Open
Abstract
Mangrove ecosystems play a crucial role in maintaining ecological balance with leaf litter serving as an important substrate for diverse microbial communities. This study investigates the microbial communities inhabiting leaf litter from four different mangrove species: Rhizophora apiculata, Rhizophora stylosa, Sonneratia caseolaris, and Avicennia marina collected from Kebun Raya Mangrove, Surabaya, Indonesia. Using metagenomic sequencing, we revealed that Proteobacteria were predominant, followed by Chlorobi and Actinobacteria in the samples. Interestingly, we detected notable populations of anaerobic bacteria, including genus of Chlorobaculum and Allochromatium. Metagenomic analyses exhibited high levels of adaptation to stressors, evidenced by the prevalence of genes conferring resistance to antibiotics (e.g., beta-lactams, tetracyclines), heavy metals (e.g., chromium, arsenic), and hydrocarbons. Furthermore, the metagenomic analysis revealed the presence of genes involved in the biosynthesis of polyunsaturated fatty acids (PUFAs), antimicrobial compounds, and plant growth-promoting activities. These findings highlight the potential of mangrove leaf litter as a reservoir of beneficial microbes with diverse biotechnological applications, including bioremediation, nutraceuticals, pharmaceuticals, and agriculture.
Collapse
Affiliation(s)
- L Alifia
- Institut Teknologi Sepuluh Nopember, Department of Biology, Surabaya, Indonesia
| | - E Zulaika
- Institut Teknologi Sepuluh Nopember, Department of Biology, Surabaya, Indonesia
| | - S Soeprijanto
- Institut Teknologi Sepuluh Nopember, Faculty of Vocational Studies, Department of Industrial Chemical Engineering, Surabaya, Indonesia
| | - A Hamzah
- Institut Teknologi Sepuluh Nopember, Faculty of Vocational Studies, Department of Industrial Chemical Engineering, Surabaya, Indonesia
| | - A Luqman
- Institut Teknologi Sepuluh Nopember, Department of Biology, Surabaya, Indonesia
| |
Collapse
|
2
|
Wu J, Wu K, Yang J, Chen G, Tang F, Ye Y. Ecophysiological responses of mangrove Kandelia obovata seedlings to bed-cleaning sludge from coastline shrimp ponds. MARINE POLLUTION BULLETIN 2024; 209:117070. [PMID: 39393246 DOI: 10.1016/j.marpolbul.2024.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024]
Abstract
Cumulative effect of bed-cleaning sludge (BCS) from shrimp ponds on the physiology of Kandelia obovata seedling were investigated. Based on the accumulation rate of BCS discharged from shrimp ponds in mangrove forests, four types of sediment coverage thicknesses (SCT) of 0, 2, 4, and 8 cm were set up. With the increases in SCTs, photosynthetic rate, stomatal conductance, transpiration rates were lowest in SCT8; intercellular CO2 concentrations were lowest in SCT4. Leaf superoxide dismutase and peroxidase activities rose and then fell with the increases in SCTs, and Leaf malonaldehyde contents significantly increased. However, contents of leaf free proline, soluble protein and soluble sugar were lowest for SCT4. Root activity was highest for SCT4. Leaves had high N contents, while roots had high P contents. Overall, as for physiological parameters of K. obovata seedlings, SCTs <4 cm were suitable and the values up to 8 cm formed some stresses.
Collapse
Affiliation(s)
- Jiajia Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Kangli Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Jingjing Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Guangcheng Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Feilong Tang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Yong Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
3
|
Abril AG, Calo-Mata P, Böhme K, Villa TG, Barros-Velázquez J, Sánchez-Pérez Á, Pazos M, Carrera M. Shotgun proteomic analyses of Pseudomonas species isolated from fish products. Food Chem 2024; 450:139342. [PMID: 38631198 DOI: 10.1016/j.foodchem.2024.139342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Numerous Pseudomonas species can infect aquatic animals, such as farmed rainbow trout, sea trout, sea bass, and sea bream, by causing disease or stress reactions. In aquaculture facilities, a number of Pseudomonas species have been isolated and identified as the main pathogens. The present study describes the characterization of 18 Pseudomonas strains, isolated from fish products using shotgun proteomics. The bacterial proteomes obtained were further analyzed to identify the main functional pathway proteins involved. In addition, this study revealed the presence of 1015 non-redundant peptides related to virulence factors. An additional 25 species-specific peptides were identified as putative Pseudomonas spp. biomarkers. The results constitute the largest dataset, described thus far for the rapid identification and characterization of Pseudomonas species present in edible fish; furthermore, these data can provide the basis for further research into the development of new therapies against these harmful pathogens.
Collapse
Affiliation(s)
- Ana G Abril
- Department of Food Technology, Marine Research Institute (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain; Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain.
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain.
| | - Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Tomás G Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain.
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Manuel Pazos
- Department of Food Technology, Marine Research Institute (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain.
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain.
| |
Collapse
|
4
|
Sepúlveda-Correa A, Monsalve L, Polania J, Mestanza O, Vanegas J. Effect of salinity on genes involved in the stress response in mangrove soils. Antonie Van Leeuwenhoek 2023; 116:1171-1184. [PMID: 37682363 DOI: 10.1007/s10482-023-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/02/2023] [Indexed: 09/09/2023]
Abstract
Mangroves are a challenging ecosystem for the microorganisms that inhabit them, considering they are subjected to stressful conditions such as high and fluctuating salinity. Metagenomic analysis of mangrove soils under contrasting salinity conditions was performed at the mouth of the Ranchera River to the Caribbean Sea in La Guajira, Colombia, using shotgun sequencing and the Illumina Hiseq 2500 platform. Functional gene analysis demonstrated that salinity could influence the abundance of microbial genes involved in osmoprotectant transport, DNA repair, heat shock proteins (HSP), and Quorum Sensing, among others. In total, 135 genes were discovered to be linked to 12 pathways. Thirty-four genes out of 10 pathways had statistical differences for a p-value and FDR < 0.05. UvrA and uvrB (nucleotide excision repair), groEL (HSP), and secA (bacterial secretion system) genes were the most abundant and were enriched by high salinity. The results of this study showed the prevalence of diverse genetic mechanisms that bacteria use as a response to survive in the challenging mangrove, as well as the presence of various genes that are recruited in order to maintain bacterial homeostasis under conditions of high salinity.
Collapse
Affiliation(s)
- Alejandro Sepúlveda-Correa
- Natural Sciences Department, Université du Québec en Outaouais, 58 Rue Principale, Ripon, QC, J0V 1V0, Canada
- Universidad Nacional de Colombia Sede Medellín, Cra. 65 #59a-110, Medellín, Colombia
| | | | - Jaime Polania
- Universidad Nacional de Colombia Sede Medellín, Cra. 65 #59a-110, Medellín, Colombia
| | - Orson Mestanza
- Instituto Nacional de Salud, Cápac Yupanqui 1400 - Jesus María, Lima, Perú
| | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| |
Collapse
|
5
|
Kelbrick M, Hesse E, O' Brien S. Cultivating antimicrobial resistance: how intensive agriculture ploughs the way for antibiotic resistance. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001384. [PMID: 37606636 PMCID: PMC10482381 DOI: 10.1099/mic.0.001384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to public health, global food security and animal welfare. Despite efforts in antibiotic stewardship, AMR continues to rise worldwide. Anthropogenic activities, particularly intensive agriculture, play an integral role in the dissemination of AMR genes within natural microbial communities - which current antibiotic stewardship typically overlooks. In this review, we examine the impact of anthropogenically induced temperature fluctuations, increased soil salinity, soil fertility loss, and contaminants such as metals and pesticides on the de novo evolution and dissemination of AMR in the environment. These stressors can select for AMR - even in the absence of antibiotics - via mechanisms such as cross-resistance, co-resistance and co-regulation. Moreover, anthropogenic stressors can prime bacterial physiology against stress, potentially widening the window of opportunity for the de novo evolution of AMR. However, research to date is typically limited to the study of single isolated bacterial species - we lack data on how intensive agricultural practices drive AMR over evolutionary timescales in more complex microbial communities. Furthermore, a multidisciplinary approach to fighting AMR is urgently needed, as it is clear that the drivers of AMR extend far beyond the clinical environment.
Collapse
Affiliation(s)
- Matthew Kelbrick
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Elze Hesse
- College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Siobhán O' Brien
- Department of Microbiology, Moyne Institute for Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
6
|
Li B, Jeon MK, Li X, Yan T. Differential impacts of salinity on antibiotic resistance genes during cattle manure stockpiling are linked to mobility potentials revealed by metagenomic sequencing. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130590. [PMID: 37055994 DOI: 10.1016/j.jhazmat.2022.130590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/09/2022] [Accepted: 12/08/2022] [Indexed: 06/19/2023]
Abstract
Livestock manure is an important source of antibiotic resistance genes (ARGs), and its salinity level can change during stockpiling. To understand how the salinity changes affect the fate of ARGs, cattle manure was adjusted of salinity and stockpiled in laboratory microcosms at low (0.3% salt), moderate (3.0%) and high salinity levels (10.0%) for 44 days. Amongst the five ARGs (tetO, blaTEM, sul1, tetM, and ermB) and the first-class integrase (intI1) monitored by qPCR, the relative abundance of tetO and blaTEM exhibited no clear trend in response to salinity levels, while that of sul1, tetM, ermB and intI1 showed clear downward trends over time at the lower salinity levels (0.3% and 3%) but not at the high salinity level (10%). Metagenomic contig construction of cattle manure samples revealed that sul1, tetM and ermB genes were more likely to associate with mobile genetic elements (MGEs) than tetO and blaTEM, suggesting that their slower decay at higher salinity levels was either caused by horizontal gene transfer or co-selection of ARGs and osmotic stress resistant determinants. Further analysis of metagenomic contigs showed that osmotic stress resistance can also be located on MGEs or in conjunction with ARGs.
Collapse
Affiliation(s)
- Bo Li
- Department of Civil and Environmental Engineering, Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Min Ki Jeon
- Department of Civil and Environmental Engineering, Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Tao Yan
- Department of Civil and Environmental Engineering, Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States; Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States.
| |
Collapse
|
7
|
Sun R, He L, Li T, Dai Z, Sun S, Ren L, Liang YQ, Zhang Y, Li C. Impact of the surrounding environment on antibiotic resistance genes carried by microplastics in mangroves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155771. [PMID: 35537514 DOI: 10.1016/j.scitotenv.2022.155771] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
The pollution of antibiotic resistance genes (ARGs) carried by microplastics (MPs) is a growing concern. Mangroves are located at the intersection of land and sea and are seriously affected by MP pollution. However, few studies have systematic research evaluating the transmission risk of ARGs carried by MPs in mangroves. We conducted in situ experiments by burying five different MPs (polypropylene, high-density polyethylene, polystyrene, polyethylene glycol terephthalate, and polycaprolactone particles) in mangroves with different surrounding environments. A total of 10 genes in the MPs of mangroves were detected using quantitative real-time polymerase chain reactions, including eight ARGs and two mobile genetic elements (MGEs). The abundance of ARGs in Guanhai park mangroves in living areas (GH) was higher than that of Gaoqiao mangroves in protected areas (GQ) and Beiyue dike mangroves in aquaculture pond areas (BY). Pathogenic bacteria, such as Acinetobacter, Bacillus, and Vibrio were found on the MP surfaces of the mangroves. The number of ARGs carried by multiple drug-resistant bacteria in the GH mangroves was greater than that in the GQ and BY mangroves. Moreover, the ARGs carried by MPs in GH mangroves had the highest potential transmission risk by horizontal gene transfer. Sociometric and environmental factors were the main drivers shaping the distribution characteristics of ARGs and MGEs. Polypropylene and high-density polyethylene particles are preferred substrates for obtaining diffuse ARGs. This study investigated the drivers of ARGs in the MPs of mangroves and provided essential guidance on the use and handling of plastics.
Collapse
Affiliation(s)
- Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ting Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei Ren
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Qiu Liang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, China.
| |
Collapse
|
8
|
Kaviani Rad A, Balasundram SK, Azizi S, Afsharyzad Y, Zarei M, Etesami H, Shamshiri RR. An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4666. [PMID: 35457533 PMCID: PMC9025980 DOI: 10.3390/ijerph19084666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/29/2023]
Abstract
Excessive use of antibiotics in the healthcare sector and livestock farming has amplified antimicrobial resistance (AMR) as a major environmental threat in recent years. Abiotic stresses, including soil salinity and water pollutants, can affect AMR in soils, which in turn reduces the yield and quality of agricultural products. The objective of this study was to investigate the effects of antibiotic resistance and abiotic stresses on antimicrobial resistance in agricultural soils. A systematic review of the peer-reviewed published literature showed that soil contaminants derived from organic and chemical fertilizers, heavy metals, hydrocarbons, and untreated sewage sludge can significantly develop AMR through increasing the abundance of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARBs) in agricultural soils. Among effective technologies developed to minimize AMR's negative effects, salinity and heat were found to be more influential in lowering ARGs and subsequently AMR. Several strategies to mitigate AMR in agricultural soils and future directions for research on AMR have been discussed, including integrated control of antibiotic usage and primary sources of ARGs. Knowledge of the factors affecting AMR has the potential to develop effective policies and technologies to minimize its adverse impacts.
Collapse
Affiliation(s)
- Abdullah Kaviani Rad
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz 71946-85111, Iran;
| | - Siva K. Balasundram
- Department of Agriculture Technology, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria 0003, South Africa;
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Cape Town 7129, South Africa
| | - Yeganeh Afsharyzad
- Department of Microbiology, Faculty of Modern Sciences, The Islamic Azad University of Tehran Medical Sciences, Tehran 19496-35881, Iran;
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz 71946-85111, Iran;
- Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid 73819-43885, Iran
| | - Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran 14179-35840, Iran;
| | - Redmond R. Shamshiri
- Leibniz Institute for Agricultural Engineering and Bioeconomy, 14469 Potsdam-Bornim, Germany;
| |
Collapse
|