1
|
Jones IT, Martin SB, Miksis-Olds JL. Exploring offshore particle motion soundscapes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:149-168. [PMID: 39791995 DOI: 10.1121/10.0034748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Fishes and aquatic invertebrates utilize acoustic particle motion for hearing, and some additionally detect sound pressure. Yet, few underwater soundscapes studies report particle motion, which is often assumed to scale predictably with pressure in offshore habitats. This relationship does not always exist for low frequencies or near reflective boundaries. This study compared particle motion and sound pressure from hydrophone arrays near the seafloor at six sites on the U.S. Mid and South Atlantic Outer Continental Shelf and assessed predictability of sound pressure and particle motion levels by environmental indicators (wind, vessels, temperature, currents). Unidentified fish sounds (100-750 Hz) had particle motion magnitudes 4.8-12.6 dB greater than those predicted from single hydrophone (pressure) measurements, indicating that these sounds were received in the near field. Excess particle motion attributed to hydrodynamic flow noise (<100 Hz) was also present at all sites. Most sounds (25th-75th percentile) from other sources received in the far field (vessels, mammals), had measured particle motion within ±3 dB of that predicted from single hydrophone measurements. The results emphasize for offshore soundscapes the importance of particle motion measurement for short-time (1 min) and near field signals, and that pressure measurement is sufficient for long-term (1 year) predictive modeling.
Collapse
Affiliation(s)
- Ian T Jones
- Center for Acoustics Research and Education, University of New Hampshire, Durham, New Hampshire 03823, USA
| | - S B Martin
- JASCO Applied Sciences, 20 Mount Hope Drive, Dartmouth, Nova Scotia B2Y 4K1, Canada
| | - J L Miksis-Olds
- Center for Acoustics Research and Education, University of New Hampshire, Durham, New Hampshire 03823, USA
| |
Collapse
|
2
|
Senecal JF, Dupuch A, Lagrois D, Mingelbier M, Chion C. Approaching merchant ships elicit behavioral changes in Atlantic sturgeon (Acipenser oxyrinchus) in the St. Lawrence River, Canada. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39638750 DOI: 10.1111/jfb.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
There are gaps in our understanding of sturgeon's response to anthropogenic sounds and the spatial scales at which they occur. We measured spatial displacement of Atlantic sturgeon in the St. Lawrence River at various distances of approaching merchant ships. This fish population is designated as "threatened," although anthropogenic noise is not currently considered a direct threat. For several years, Atlantic sturgeon migrations have been monitored by the Quebec government using acoustic transmitters and a network of telemetry receivers in the St. Lawrence River. We combined fish telemetry data with merchant ship positions to detect co-occurrences between Atlantic sturgeons that remained in the vicinity of the receivers and approaching ships. Numerical simulations reveal that the probability of masking of transmitters (69 kHz) by ship noise was infinitesimal and that the disappearance of the transmitter signal was related to fish movement. When the ships approached, a significant spatial displacement was detected with ships at distances between 0.5 and 5 km from the receivers. After emitter signal loss, over 61% of sturgeons took at least 30 min to be detected again or did not return at all in the vicinity of the receivers. Furthermore, the median time to redetection after a ship transit was longer than when no ship was approaching (31 vs. 18 min). Our results show that sturgeons alter their position due to approaching ships at greater trigger distances than previously documented, which are too far away to be attributed to visual cues alone. We also found that the long-distance propagation of low-frequency sounds from large ships through water should not be heard by Atlantic sturgeon at distances of 1 km and longer based on current knowledge of sturgeons hearing. These results suggest that behavioral responses in Atlantic sturgeons are modulated not only by visual cues but can also be triggered by underwater sounds at relatively long distances, although the precise mechanism is still unknown.
Collapse
Affiliation(s)
- Jean-Francois Senecal
- Laboratoire Interdisciplinaire de Simulation Socio-Écologique (LISSÉ), Université du Québec en Outaouais, Gatineau, Québec, Canada
- Département des Sciences Naturelles, Université du Québec en Outaouais, Ripon, Québec, Canada
| | - Angélique Dupuch
- Département des Sciences Naturelles, Université du Québec en Outaouais, Ripon, Québec, Canada
| | - Dominic Lagrois
- Laboratoire Interdisciplinaire de Simulation Socio-Écologique (LISSÉ), Université du Québec en Outaouais, Gatineau, Québec, Canada
- Département des Sciences Naturelles, Université du Québec en Outaouais, Ripon, Québec, Canada
| | - Marc Mingelbier
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Québec, Québec, Canada
| | - Clément Chion
- Laboratoire Interdisciplinaire de Simulation Socio-Écologique (LISSÉ), Université du Québec en Outaouais, Gatineau, Québec, Canada
- Département des Sciences Naturelles, Université du Québec en Outaouais, Ripon, Québec, Canada
| |
Collapse
|
3
|
Williams BR, McAfee D, Connell SD. Anthropogenic noise disrupts acoustic cues for recruitment. Proc Biol Sci 2024; 291:20240741. [PMID: 39043238 PMCID: PMC11265905 DOI: 10.1098/rspb.2024.0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Anthropogenic noise is rising and may interfere with natural acoustic cues used by organisms to recruit. Newly developed acoustic technology provides enriched settlement cues to boost recruitment of target organisms navigating to restoration sites, but can it boost recruitment in noise-polluted sites? To address this dilemma, we coupled replicated aquarium experiments with field experiments. Under controlled and replicated laboratory conditions, acoustic enrichment boosted recruitment by 2.57 times in the absence of anthropogenic noise, but yielded comparable recruitment in its presence (i.e. no boosting effect). Using the same technique, we then tested the replicability of these responses in real-world settings where independently replicated 'sites' are unfeasible owing to the inherent differences in soundscapes. Again, acoustic enrichment increased recruitment where anthropogenic noise was low (by 3.33 times), but had no effect at a site of noise pollution. Together, these coupled laboratory-to-field outcomes indicate that anthropogenic noise can mask the signal of acoustic enrichment. While noise pollution may reduce the effectiveness of acoustic enrichment, some of our reported observations suggest that anthropogenic noise per se might also provide an attractive cue for oyster larvae to recruit. These findings underscore the complexity of larval behavioural responses to acoustic stimuli during recruitment processes.
Collapse
Affiliation(s)
- Brittany R. Williams
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide5005, Australia
| | - Dominic McAfee
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide5005, Australia
- Environment Institute, The University of Adelaide, Adelaide5005, Australia
| | - Sean D. Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide5005, Australia
- Environment Institute, The University of Adelaide, Adelaide5005, Australia
| |
Collapse
|
4
|
Tu Z, Tang L, Khan FU, Hu M, Shen H, Wang Y. Low-frequency noise impairs righting reflex behavior by disrupting central nervous system in the sea slug Onchidium reevesii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170552. [PMID: 38309332 DOI: 10.1016/j.scitotenv.2024.170552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Anthropogenic noise has significantly increased due to human activities, posing a threat to the health and survival of marine organisms. However, current studies have often emphasized its effects on the physiological aspects of marine organisms, while ignored the relationship between the neuroendocrine system and behavior. This study aimed to evaluate the righting behavior and relevant physiological functions of the central nervous system (CNS) in sea slug (Onchidium reevesii) exposed to low-frequency noise and subsequent noise removal. The duration of the sea slugs' righting reflex increased with longer noise exposure time. The degree of neuronal cell damage and apoptosis were significantly increased and relevant gene expressions were affected (Glu, AChE, FMRFamide and CaMKII) (P < 0.05). After the removal of noise, the righting reflex speed gradually recovered, and the degree of neuronal cell damage, apoptosis and the expression levels of genes continued to decrease. Pearson correlation analysis showed that the righting time was positively correlated with CNS tissue and DNA damage, apoptosis rate, and negatively correlated with the expression levels of genes. Therefore, low-frequency noise exposure causes damage to the CNS of sea slugs, subsequently impairing their normal behavior. Sea slugs exhibited partial recovery within 384 h after removing noise. These findings provide valuable insights into the effects of low-frequency noise on the CNS and behavior of marine invertebrates.
Collapse
Affiliation(s)
- Zhihan Tu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liusiqiao Tang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Heding Shen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Wilson L, Constantine R, Pine MK, Farcas A, Radford CA. Impact of small boat sound on the listening space of Pempheris adspersa, Forsterygion lapillum, Alpheus richardsoni and Ovalipes catharus. Sci Rep 2023; 13:7007. [PMID: 37117196 PMCID: PMC10147705 DOI: 10.1038/s41598-023-33684-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Anthropogenic stressors, such as plastics and fishing, are putting coastal habitats under immense pressure. However, sound pollution from small boats has received little attention given the importance of sound in the various life history strategies of many marine animals. By combining passive acoustic monitoring, propagation modelling, and hearing threshold data, the impact of small-boat sound on the listening spaces of four coastal species was determined. Listening space reductions (LSR) were greater for fishes compared to crustaceans, for which LSR varied by day and night, due to their greater hearing abilities. Listening space also varied by sound modality for the two fish species, highlighting the importance of considering both sound pressure and particle motion. The theoretical results demonstrate that boat sound hinders the ability of fishes to perceive acoustic cues, advocating for future field-based research on acoustic cues, and highlighting the need for effective mitigation and management of small-boat sound within coastal areas worldwide.
Collapse
Affiliation(s)
- Louise Wilson
- Leigh Marine Laboratory, Institute of Marine Science, Waipapa Taumata Rau The University of Auckland, 160 Goat Island Road, Leigh, 0985, New Zealand.
| | - Rochelle Constantine
- Leigh Marine Laboratory, Institute of Marine Science, Waipapa Taumata Rau The University of Auckland, 160 Goat Island Road, Leigh, 0985, New Zealand
- School of Biological Sciences, Waipapa Taumata Rau The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Matthew K Pine
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Adrian Farcas
- Centre for Environment, Fisheries & Aquaculture Science (CEFAS), Lowestoft, Suffolk, UK
| | - Craig A Radford
- Leigh Marine Laboratory, Institute of Marine Science, Waipapa Taumata Rau The University of Auckland, 160 Goat Island Road, Leigh, 0985, New Zealand
| |
Collapse
|
6
|
Jézéquel Y, Bonnel J, Eliès P, Chauvaud L. Acoustic scaling in the European spiny lobster (Palinurus elephas). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:3235. [PMID: 36586865 DOI: 10.1121/10.0016363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Sound is an important cue for arthropods. In insects, sound features and sound-producing apparatus are tightly correlated to enhance signal emission in larger individuals. In contrast, acoustic scaling in marine arthropods is poorly described even if they possess similar sound-producing apparatus. Here, the acoustic scaling of the European spiny lobster is analyzed by recording sounds in situ at 1 m from a wide range of body sizes. The dimensions of associated sound-producing apparatus increased with body size, indicating sound features would also be influenced by spiny lobster size. Indeed, temporal sound features changed with body size, suggesting differences in calling songs could be used for spiny lobster acoustic communication. Source levels (peak-peak) ranged from 131 to 164 dB re 1μPa for smaller and larger lobsters, respectively, which could be explained by more efficient resonating structures in larger animals. In addition, dominant frequencies were highly constrained by ambient noise levels, masking the low-frequency content of low intensity sounds from smaller spiny lobsters. Although the ecological function of spiny lobster sounds is not clear yet, these results suggest larger body sizes benefit because louder calls increase the broadcast area and potential interactions with conspecifics, as shown in the insect bioacoustic literature.
Collapse
Affiliation(s)
- Youenn Jézéquel
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Unite Mixte de Recherche 6539, Centre National de la Recherche Scientifique, Universite de Bretagne Occidentale, Institut de Recherche pour le Developpement, Ifremer, Laboratoire International Associe BeBEST, Institut Universitaire Européen de la Mer (IUEM), rue Dumont D'Urville, 29280 Plouzané, France
| | - Julien Bonnel
- Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Phillipe Eliès
- Plateforme d'Imagerie et de Mesures en Microscopie, Université de Bretagne Occidentale, 29200 Brest, France
| | - Laurent Chauvaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Unite Mixte de Recherche 6539, Centre National de la Recherche Scientifique, Universite de Bretagne Occidentale, Institut de Recherche pour le Developpement, Ifremer, Laboratoire International Associe BeBEST, Institut Universitaire Européen de la Mer (IUEM), rue Dumont D'Urville, 29280 Plouzané, France
| |
Collapse
|