1
|
Liu Q, Cui R, Du Y, Shen J, Jin C, Zhou X. The green tide causative-species Ulva prolifera responding to exposure to oil and dispersant. Heliyon 2024; 10:e29641. [PMID: 38698977 PMCID: PMC11064083 DOI: 10.1016/j.heliyon.2024.e29641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
In order to study the role of oil spills in the occurrence of green tide in the Yellow Sea, the physiological characteristics and photosynthetic activities of green tide causative-species Ulva prolifera was monitored under different conditions including two oil water-accommodated fractions (WAFs) of diesel oil and crude oil, dispersed water-accommodated fractions (DWAFs) and dispersant GM-2. The results showed that, the physiological parameters of U. prolifera including the growth, pigment, carbohydrate and protein contents decreased with the increased diesel oil WAF (WAFDO) concentration, while crude oil WAF (WAFCO) showed low concentration induction and high concentration inhibition effect. In addition, with the increase of WAFs concentration, two antioxidant activities were activated. However, compared with WAFDO alone and WAFCO alone, the mixture of oil and dispersant enhanced the toxicity on the above physiological characteristics of U. prolifera. On the other hand, the photosynthetic efficiency of U. prolifera showed a similar trend. Two WAFs showed significant concentration effects on the chlorophyll-a fluorescence transients and JIP-test. The addition of dispersant further blocked the electron flow beyond QA and from plastoquinone (PQ) to PSI acceptor side, damaged the active OEC centers at the PSII donor side, suppressed the pool size and the reduction rate of PSI acceptor side, and reduced the energy transfer efficiency between PSII functional units. These results implied that the crude oil spills may induce the formation of U. prolifera green tide, and the oil dispersant GM-2 used after the oil spills is unlikely to further stimulate the scale of bloom, while the diesel oil spills is always not conducive to the outbreak of green tide of U. prolifera.
Collapse
Affiliation(s)
- Qing Liu
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Ruifei Cui
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Yuxin Du
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Junjie Shen
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Cuili Jin
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Xiaojian Zhou
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
2
|
Long C, Zhang Y, Wei Z, Long L. High nutrient availability modulates photosynthetic performance and biochemical components of the economically important marine macroalga Kappaphycus alvarezii (Rhodophyta) in response to ocean acidification. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106339. [PMID: 38182500 DOI: 10.1016/j.marenvres.2023.106339] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Increased atmospheric CO2 concentrations not only change the components of inorganic carbon system in seawater, resulting in ocean acidification, but also lead to decreased seawater pH, resulting in ocean acidification. Consequently, increased inorganic carbon concentrations in seawater provide a sufficient carbon source for macroalgal photosynthesis and growth. Increased domestic sewage and industrial wastewater discharge into coastal areas has led to nutrient accumulation in coastal seawaters. Combined with elevated pCO2 (1200 ppmv), increased nutrient availability always stimulates the growth of non-calcifying macroalgae, such as red economical macroalga Gracilariopsis lemaneiformis. Here, we evaluated the interactive effects of nutrients with elevated pCO2 on the economically important marine macroalga Kappaphycus alvarezii (Rhodophyta) in a factorial 21-day coupling experiment. The effects of increased nutrient availability on photosynthesis and photosynthetic pigments of K. alvarezii were greater than those of pCO2 concentration. The highest Fv/Fm values (0.660 ± 0.019 and 0.666 ± 0.030, respectively) were obtained at 2 μmol L-1 of NO3-N at two pCO2 levels. Under the elevated pCO2 condition, the Chl-a content was lowest (0.007 ± 0.004 mg g-1) at 2 μmol L-1 of NO3-N and highest (0.024 ± 0.002 mg g-1) at 50 μmol L-1 of NO3-N. The phycocyanin content was highest (0.052 ± 0.012 mg g-1) at 150 μmol L-1 of NO3-N under elevated pCO2 condition. The malondialdehyde content declined from 32.025 ± 4.558 nmol g-1 to 26.660 ± 3.124 nmol g-1 with the increased nutrients at under low pCO2. To modulate suitable adjustments, soluble biochemical components such as soluble carbohydrate, soluble protein, free amino acids, and proline were abundantly secreted and were likely to protect the integrity of cellular structures under elevated nutrient availability. Our findings can serve as a reference for cultivation and bioremediation methods under future environmental conditions.
Collapse
Affiliation(s)
- Chao Long
- Marine Environmental Engineering Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya 572000, PR China
| | - Yating Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya 572000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhangliang Wei
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou 515041, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya 572000, PR China.
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou 515041, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya 572000, PR China.
| |
Collapse
|