1
|
Yang X, Yuan R, Yang S, Dai Z, Di N, Yang H, He Z, Wei M. A salt-tolerant growth-promoting phyllosphere microbial combination from mangrove plants and its mechanism for promoting salt tolerance in rice. MICROBIOME 2024; 12:270. [PMID: 39707568 DOI: 10.1186/s40168-024-01969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/05/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Mangrove plants growing in the high salt environment of coastal intertidal zones colonize a variety of microorganisms in the phyllosphere, which have potential salt-tolerant and growth-promoting effects. However, the characteristics of microbial communities in the phyllosphere of mangrove species with and without salt glands and the differences between them remain unknown, and the exploration and the agricultural utilization of functional microbial resources from the leaves of mangrove plants are insufficient. RESULTS In this study, we examined six typical mangrove species to unravel the differences in the diversity and structure of phyllosphere microbial communities between mangrove species with or without salt glands. Our results showed that a combination of salt-tolerant growth-promoting strains of Pantoea stewartii A and Bacillus marisflavi Y25 (A + Y25) was constructed from the phyllosphere of mangrove plants, which demonstrated an ability to modulate osmotic substances in rice and regulate the expression of salt-resistance-associated genes. Further metagenomic analysis revealed that exogenous inoculation with A + Y25 increased the rice rhizosphere's specific microbial taxon Chloroflexi, thereby elevating microbial community quorum sensing and ultimately enhancing ionic balance and overall microbial community function to aid salt resistance in rice. CONCLUSIONS This study advances our understanding of the mutualistic and symbiotic relationships between mangrove species and their phyllosphere microbial communities. It offers a paradigm for exploring agricultural beneficial microbial resources from mangrove leaves and providing the potential for applying the salt-tolerant bacterial consortium to enhance crop adaptability in saline-alkaline land. Video Abstract.
Collapse
Affiliation(s)
- Xiangxia Yang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Rongwei Yuan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shuangyu Yang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhian Dai
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Na Di
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haijun Yang
- Center for Basic Experiment and Practice Training, South China Agricultural University, Guangzhou, 510462, China
| | - Zhili He
- The Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Mi Wei
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China.
| |
Collapse
|
2
|
Dey G, Maity JP, Banerjee P, Sharma RK, Das K, Gnanachandrasamy G, Wang CW, Lin PY, Wang SL, Chen CY. Evaluation and mitigation of potentially toxic elements contamination in mangrove ecosystem: Insights into phytoremediation and microbial perspective. MARINE POLLUTION BULLETIN 2024; 209:117035. [PMID: 39393228 DOI: 10.1016/j.marpolbul.2024.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Mangroves, essential coastal ecosystems, are threatened by human-induced Potentially-toxic-elements (PTEs) pollution. This study analyzed PTEs distribution, phytoremediation potential, and rhizosphere microbial communities in Taiwan's Xinfeng mangrove forest. Significant variations in physicochemical and PTEs concentrations were observed across adjacent water bodies, with moderate contamination in the river, estuary, and overlying water of mangroves sediment. The partition-coefficient showed the mobility of Bi, Pb, Co, and Sr at the water-sediment interface. The geochemical-indices revealed high Bi and Pb contamination and moderate Zn, Sr, Cu, and Cd contamination in sediment. The overall pollution indices indicated the significant contamination, while moderate ecological risk was found for Cd (40 ≤ Eri < 80). Mangroves Kandelia obovata and Avicennia marina exhibited promising PTEs phytoremediation potential (Bi, Cd, Mn, Sr, and Co). Metagenomics indicated a diverse microbial community with N-fixation, P-solubilization, IAA synthesis, and PTEs-resistance genes. These findings underscore the need for targeted conservation to protect these critical habitats.
Collapse
Affiliation(s)
- Gobinda Dey
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan; Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Jyoti Prakash Maity
- Environmental Science Laboratory, Department of Chemistry, Biological Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Raju Kumar Sharma
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Koyeli Das
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Gopalakrishnan Gnanachandrasamy
- Department of Earth Sciences, School of Physical, Chemical, and Applied Sciences, Pondicherry University, Puducherry 605104, India
| | - Chin-Wen Wang
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Pin-Yun Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan.
| | - Chien-Yen Chen
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan; You-Cheng Engineering & Technology Co., Ltd, Chiayi 62102, Taiwan.
| |
Collapse
|
3
|
Atika M, Leila B, Pereira SIA, Castro PML, Ali B. Enhancing Native Plant Establishment in Mine Tailings under Drought Stress Conditions through the Application of Organo-Mineral Amendments and Microbial Inoculants. PLANTS (BASEL, SWITZERLAND) 2024; 13:863. [PMID: 38592869 PMCID: PMC10975093 DOI: 10.3390/plants13060863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The implementation of phytoremediation strategies under arid and semiarid climates requires the use of appropriate plant species capable of withstanding multiple abiotic stresses. In this study, we assessed the combined effects of organo-mineral amendments and microbial inoculants on the chemical and biological properties of mine tailings, as well as on the growth of native plant species under drought stress conditions. Plants were cultivated in pots containing 1 kg of a mixture of mine tailings and topsoil (i.e., pre-mined superficial soil) in a 60:40 ratio, 6% marble sludge, and 10% sheep manure. Moreover, a consortium of four drought-resistant plant growth-promoting rhizobacteria (PGPR) was inoculated. Three irrigation levels were applied: well-watered, moderate water deficit, and severe water deficit, corresponding to 80%, 45%, and 30% of field capacity, respectively. The addition of topsoil and organo-mineral amendments to mine tailings significantly improved their chemical and biological properties, which were further enhanced by bacterial inoculation and plants' establishment. Water stress negatively impacted enzymatic activities in amended tailings, resulting in a significant decrease in acid and alkaline phosphatases, urease, and dehydrogenase activities. Similar results were obtained for bacteria, fungi, and actinomycete abundance. PGPR inoculation positively influenced the availability of phosphorus, total nitrogen, and organic carbon, while it increased alkaline phosphatase, urease (by about 10%), and dehydrogenase activity (by 50%). The rhizosphere of Peganum harmala showed the highest enzymatic activity and number of culturable microorganisms, especially in inoculated treatments. Severe water deficit negatively affected plant growth, leading to a 40% reduction in the shoot biomass of both Atriplex halimus and Pennisetum setaceum compared to well-watered plants. P. harmala showed greater tolerance to water stress, evidenced by lower decreases observed in root and shoot length and dry weight compared to well-watered plants. The use of bioinoculants mitigated the negative effects of drought on P. harmala shoot biomass, resulting in an increase of up to 75% in the aerial biomass in plants exposed to severe water deficit. In conclusion, the results suggest that the combination of organo-mineral amendments, PGPR inoculation, and P. harmala represents a promising approach to enhance the phytoremediation of metal-polluted soils under semiarid conditions.
Collapse
Affiliation(s)
- Madline Atika
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, BP 549, Guéliz, Marrakech 40000, Morocco;
| | - Benidire Leila
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, BP 549, Guéliz, Marrakech 40000, Morocco;
- Ecole Supérieure de Technologie El Kelâa des Sraghna, Université Cadi Ayyad, Route de Béni Mellal Km 8 B.P 104, El Kelaa des Sraghna 43000, Morocco
| | - Sofia I. A. Pereira
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.I.A.P.); (P.M.L.C.)
| | - Paula M. L. Castro
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.I.A.P.); (P.M.L.C.)
| | - Boularbah Ali
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, BP 549, Guéliz, Marrakech 40000, Morocco;
- Center of Excellence for Soil and Africa Research in Africa, College of Agriculture and Environmental Sciences, Université Mohammed VI Polytechnique (UM6P), Benguerir 43150, Morocco
| |
Collapse
|
4
|
Ghorbel S, Aldilami M, Zouari-Mechichi H, Mechichi T, AlSherif EA. Isolation and characterization of a plant growth‑promoting rhizobacterium strain MD36 that promotes barley seedlings and growth under heavy metals stress. 3 Biotech 2023; 13:145. [PMID: 37124983 PMCID: PMC10140241 DOI: 10.1007/s13205-023-03566-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/15/2023] [Indexed: 05/02/2023] Open
Abstract
Plant growth, promoting, bacteria, (PGPB) can improve plant germination and growth in heavy metal-contaminated land and enhance heavy metal removal efficiency. In this study, we isolated PGPR bacterial strains which can withstand heavy metal pollution and tested their ability to improve barley germination under heavy metal stress. Out of 16 multi-resistant heavy metal isolates, strain MD36 was identified by 16S rRNA sequencing and shared close relation to different species of the genus Glutamicibacter. The new isolated strain showed other important PGPR activities, mainly IAA production and salt tolerance. The effect of adding the strain MD36 to barley grains under heavy metal stress enhanced their germination up to 100%, while the percentage of germination ranged between 0 and 20% for non-inoculated grains. In addition, in these conditions, MD36 can significantly enhance barley growth by reducing the heavy metal effect. This study strongly recommends the use of MD36 as seed coatings trials in the field to enhance growth and yield in soils contaminated with heavy metals, as well as in bioremediation of HM-contaminated salt-containing soils and water.
Collapse
Affiliation(s)
- Sofiane Ghorbel
- Jeddah, College of Science and Arts at Khulais, Biology Department, University of Jeddah, Jeddah, Saudi Arabia
- Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology, University of Sfax, 3038 Sfax, Tunisia
| | - Mohammad Aldilami
- Jeddah, College of Science and Arts at Khulais, Biology Department, University of Jeddah, Jeddah, Saudi Arabia
| | - Hela Zouari-Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Emad Ali AlSherif
- Jeddah, College of Science and Arts at Khulais, Biology Department, University of Jeddah, Jeddah, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni‒Suef, 62521 Egypt
| |
Collapse
|
5
|
Guo Y, Ke X, Zhang J, He X, Li Q, Zhang Y. Distribution, Risk Assessment and Source of Heavy Metals in Mangrove Wetland Sediments of Dongzhai Harbor, South China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1090. [PMID: 36673847 PMCID: PMC9859084 DOI: 10.3390/ijerph20021090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 05/22/2023]
Abstract
Heavy metals are common environmental contaminants that are toxic, non-biodegradable, and bioaccumulative. They can bioaccumulate through the food chain and present a risk to both public health and ecology. Therefore, this study takes the mangrove wetland of Dongzhai Harbor as an example. The concentrations of heavy metals such as As, Cd, Cr, Cu, Ni, Pb, and Zn in the surface sediments of mangrove wetlands were measured to reveal their distribution, the contamination level was assessed, and the sources of contamination were analyzed. The distribution of Cr, Zn, Ni, Pb, Cu, and Cd concentrations are: Yanfeng East River > Sanjiang River > Yanzhou River > Yanfeng West River, while the As concentration in the Yanfeng West River is greater than that in the Yanfeng East River. According to the correlation analysis, the concentrations of Cr, Zn, Ni, Cu, and Cd are significantly and positively correlated with total organic carbon (TOC), total phosphorus (TP), total nitrogen (TN), and salinity (SAL) and shared a significantly negative correlation with pH. There is moderate contamination risk of As and slight contamination risk of Cd, Cr, Cu, Ni, Pb, and Zn in most regions within the study area. Cd, Cr, Cu, Ni, Pb, and Zn exhibit the same sources, which are mainly influenced by human sources such as aquaculture, agricultural cultivation, and livestock farming, while the source of As comes from aquaculture.
Collapse
Affiliation(s)
- Yuan Guo
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xianzhong Ke
- Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China
| | - Jingxian Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xinhui He
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Qinghua Li
- Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China
| | - Yanpeng Zhang
- Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China
| |
Collapse
|