1
|
Freeman D, Nelson RK, Pate K, Reddy CM, Ward CP. Forecasting Photo-Dissolution for Future Oil Spills at Sea: Effects of Oil Properties and Composition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39137011 PMCID: PMC11361275 DOI: 10.1021/acs.est.4c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Photo-dissolution, the photochemical production of water-soluble species from oil, can transfer oil-derived dissolved organic carbon (DOC) from floating surface slicks to the underlying seawater. Photo-dissolution was likely a quantitatively relevant fate process for the Macondo crude oil spilled during the 2010 Deepwater Horizon spill, but the importance of photo-dissolution for other oils is poorly constrained. This study evaluated the photo-dissolution reactivities (apparent quantum yields) and modeled rates for oils with diverse physical properties and chemical compositions, including an ultra low sulfur fuel oil (ULSFO). Photo-dissolution from UV (310 nm) light was strongly positively correlated with the fraction of small, gas-oil range compounds (
Collapse
Affiliation(s)
- Danielle
Haas Freeman
- MIT-WHOI
Joint Program in Oceanography/Applied Ocean Science & Engineering, Woods Hole, Massachusetts 02543, United States
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Robert K. Nelson
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Kali Pate
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Christopher M. Reddy
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Collin P. Ward
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
2
|
Benz PP, Zito P, Osborn E, Goranov AI, Hatcher PG, Seivert MD, Jeffrey WH. Effects of burning and photochemical degradation of Macondo surrogate oil on its composition and toxicity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1205-1215. [PMID: 38842096 DOI: 10.1039/d4em00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Petroleum products in the environment can produce significant toxicity through photochemically driven processes. Burning surface oil and photochemical degradation were two mechanisms for oil removal after the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico. After burning, residual oil remains in the environment and may undergo further weathering, a poorly understood fate. Although photochemistry was a major degradation pathway of the DWH oil, its effect on burned oil residue in the environment is under studied. Here, we ignited Macondo surrogate crude oil and allowed it to burn to exhaustion. Water-accommodated fractions (WAFs) of the burn residue were created in full sunlight to determine the effects of photochemical weathering on the burned oil residue. Our findings show that increased dissolved organic carbon concentrations (DOC) for the light unburned and light burned after sunlight exposure positively correlated to decreased microbial growth and production inhibition (i.e. more toxic) when compared to the dark controls. Optical and molecular analytical techniques were used to identify the classes of compounds contributing to the toxicity in the dark and light burned and dark and light unburned WAFs. After light exposure, the optical composition between the light unburned and light burned differed significantly (p < 0.05), revealing key fluorescence signatures commonly identified as crude oil degradation products. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis showed more condensed aromatic, reduced oxygenated compounds present in the light burned than in the light unburned. FT-ICR MS also showed an increase in the percent relative abundance of carboxyl-rich alicyclic molecules (CRAM) like compounds in the light burned compared to light unburned. The increase in CRAM suggests that the composition of the light burned is more photorefractory, i.e., reduced, explaining the residual toxicity observed in microbial activity. Overall, these data indicate burning removes some but not all toxic compounds, leaving behind compounds which retain considerable toxicity. This study shows that burn oil residues are photolabile breaking down further into complex reduced compounds.
Collapse
Affiliation(s)
- Pamela P Benz
- Department of Chemistry, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, USA.
| | - Phoebe Zito
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA
| | - Ed Osborn
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA
| | - Aleksandar I Goranov
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Patrick G Hatcher
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Matthew D Seivert
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
| | - Wade H Jeffrey
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, USA
| |
Collapse
|
3
|
Podgorski DC, Walley J, Shields MP, Hebert D, Harsha ML, Spencer RGM, Tarr MA, Zito P. Dispersant-enhanced photodissolution of macondo crude oil: A molecular perspective. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132558. [PMID: 37729707 DOI: 10.1016/j.jhazmat.2023.132558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Previous laboratory studies developed a conceptual model based on elevated non-volatile dissolved organic carbon (NVDOC) concentrations after photodegradation and subsequent dissolution of Macondo oil following the Deepwater Horizon blowout. However, those experiments did not account for the effects of ∼1 million gallons of dispersant applied to the surface oil. Here, laboratory results show photodissolution in the presence of dispersant results in > 2x increase in NVDOC concentrations after extensive photoprocessing relative to oil without dispersant. This result corresponds with an apparent increase in the percentage of surface oil photodissolution from approximately 4% in the absence of dispersant to 7% in the presence of dispersant. The oil and dissolved products were analyzed by excitation-emission matrix spectroscopy and ultrahigh resolution mass spectrometry. The compounds that persisted in the oil phase are relatively aromatic without dispersant, while those in the presence of dispersant are highly aliphatic, paraffinic, wax-like compounds. The composition of the dissolved compounds produced from both treatment types are nearly identical after 240 h of exposure to simulated sunlight. The NVDOC and chemical composition information indicate that the photodissolution of MC252 oil in the presence of dispersant is enhanced and accelerated, suggesting that the effects of dispersants should be included in mass transfer calculations from the oil to the aqueous phase.
Collapse
Affiliation(s)
- David C Podgorski
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive New Orleans, LA 70148, United States; Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, 2000 Lakeshore Drive New Orleans, LA 70148, United States; Pontchartrain Institute for Environmental Sciences, Shea Penland Coastal Education and Research Facility, University of New Orleans, 2000 Lakeshore Drive New Orleans, LA 70148, United States.
| | - Jacob Walley
- Department of Natural Sciences, Gardner-Webb University, Boiling Springs, NC 28017, United States
| | - Matthew P Shields
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive New Orleans, LA 70148, United States
| | - Deja Hebert
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive New Orleans, LA 70148, United States
| | - Maxwell L Harsha
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive New Orleans, LA 70148, United States
| | - Robert G M Spencer
- National High Magnetic Field Laboratory, Geochemistry Group, Department of Earth, Ocean and Atmospheric Sciences, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, United States
| | - Matthew A Tarr
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive New Orleans, LA 70148, United States
| | - Phoebe Zito
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive New Orleans, LA 70148, United States; Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, 2000 Lakeshore Drive New Orleans, LA 70148, United States
| |
Collapse
|
4
|
Elsheref M, Messina L, Tarr MA. Photochemistry of oil in marine systems: developments since the Deepwater Horizon spill. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1878-1908. [PMID: 37881013 DOI: 10.1039/d3em00248a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Oil spills represent a major source of negative environmental impacts in marine systems. Despite many decades of research on oil spill behavior, photochemistry was neglected as a major factor in the fate of oil spilled in marine systems. Subsequent to the Deepwater Horizon oil spill, numerous studies using varied approaches have demonstrated the importance of photochemistry, including short-term impacts (hours to days) that were previously unrecognized. These studies have demonstrated the importance of photochemistry in the overall oil transformation after a spill and more specifically the impacts on emulsification, oxygenation, and microbial interactions. In addition to new perspectives, advances in analytical approaches have allowed an improved understanding of oil photochemistry after maritime spill. Although the literature on the Deepwater Horizon spill is extensive, this review focuses only on studies relevant to the advances in oil photochemistry understanding since the Deepwater Horizon spill.
Collapse
Affiliation(s)
- Mohamed Elsheref
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA.
| | - Lena Messina
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA.
| | - Matthew A Tarr
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA.
| |
Collapse
|
5
|
Cordova AC, Dodds JN, Tsai HHD, Lloyd DT, Roman-Hubers AT, Wright FA, Chiu WA, McDonald TJ, Zhu R, Newman G, Rusyn I. Application of Ion Mobility Spectrometry-Mass Spectrometry for Compositional Characterization and Fingerprinting of a Library of Diverse Crude Oil Samples. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2336-2349. [PMID: 37530422 PMCID: PMC10592202 DOI: 10.1002/etc.5727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/16/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Exposure characterization of crude oils, especially in time-sensitive circumstances such as spills and disasters, is a well-known analytical chemistry challenge. Gas chromatography-mass spectrometry is commonly used for "fingerprinting" and origin tracing in oil spills; however, this method is both time-consuming and lacks the resolving power to separate co-eluting compounds. Recent advances in methodologies to analyze petroleum substances using high-resolution analytical techniques have demonstrated both improved resolving power and higher throughput. One such method, ion mobility spectrometry-mass spectrometry (IMS-MS), is especially promising because it is both rapid and high-throughput, with the ability to discern among highly homologous hydrocarbon molecules. Previous applications of IMS-MS to crude oil analyses included a limited number of samples and did not provide detailed characterization of chemical constituents. We analyzed a diverse library of 195 crude oil samples using IMS-MS and applied a computational workflow to assign molecular formulas to individual features. The oils were from 12 groups based on geographical and geological origins: non-US (1 group), US onshore (3), and US Gulf of Mexico offshore (8). We hypothesized that information acquired through IMS-MS data would provide a more confident grouping and yield additional fingerprint information. Chemical composition data from IMS-MS was used for unsupervised hierarchical clustering, as well as machine learning-based supervised analysis to predict geographic and source rock categories for each sample; the latter also yielded several novel prospective biomarkers for fingerprinting of crude oils. We found that IMS-MS data have complementary advantages for fingerprinting and characterization of diverse crude oils and that proposed polycyclic aromatic hydrocarbon biomarkers can be used for rapid exposure characterization. Environ Toxicol Chem 2023;42:2336-2349. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Alexandra C. Cordova
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - James N. Dodds
- Department of Chemistry, UNC Chapel Hill, Chapel Hill, NC 27514, United States
| | - Han-Hsuan D. Tsai
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Dillon T. Lloyd
- Departments of Statistics, Biological Sciences, and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, United States
| | - Alina T. Roman-Hubers
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Fred A. Wright
- Departments of Statistics, Biological Sciences, and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, United States
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Thomas J. McDonald
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, United States
| | - Rui Zhu
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station TX 77843, United States
| | - Galen Newman
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station TX 77843, United States
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
6
|
Cordova AC, Klaren WD, Ford LC, Grimm FA, Baker ES, Zhou YH, Wright FA, Rusyn I. Integrative Chemical-Biological Grouping of Complex High Production Volume Substances from Lower Olefin Manufacturing Streams. TOXICS 2023; 11:586. [PMID: 37505552 PMCID: PMC10385386 DOI: 10.3390/toxics11070586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Human cell-based test methods can be used to evaluate potential hazards of mixtures and products of petroleum refining ("unknown or variable composition, complex reaction products, or biological materials" substances, UVCBs). Analyses of bioactivity and detailed chemical characterization of petroleum UVCBs were used separately for grouping these substances; a combination of the approaches has not been undertaken. Therefore, we used a case example of representative high production volume categories of petroleum UVCBs, 25 lower olefin substances from low benzene naphtha and resin oils categories, to determine whether existing manufacturing-based category grouping can be supported. We collected two types of data: nontarget ion mobility spectrometry-mass spectrometry of both neat substances and their organic extracts and in vitro bioactivity of the organic extracts in five human cell types: umbilical vein endothelial cells and induced pluripotent stem cell-derived hepatocytes, endothelial cells, neurons, and cardiomyocytes. We found that while similarity in composition and bioactivity can be observed for some substances, existing categories are largely heterogeneous. Strong relationships between composition and bioactivity were observed, and individual constituents that determine these associations were identified. Overall, this study showed a promising approach that combines chemical composition and bioactivity data to better characterize the variability within manufacturing categories of petroleum UVCBs.
Collapse
Affiliation(s)
- Alexandra C Cordova
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - William D Klaren
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lucie C Ford
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Fabian A Grimm
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yi-Hui Zhou
- Departments of Statistics and Biological Sciences and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Fred A Wright
- Departments of Statistics and Biological Sciences and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Barnes SJ, Althouse RC, Costa BF, Hu B, Kovalev M, Kulik T, Lee YT, Moore MC, Peng E, Pook JY, Sharma A, Wood C, Webb EA, Sterling H, Aeppli C, Thrash JC. Metagenome-Assembled Genomes from Photo-Oxidized and Nonoxidized Oil-Degrading Marine Microcosms. Microbiol Resour Announc 2023; 12:e0021023. [PMID: 37162353 PMCID: PMC10281115 DOI: 10.1128/mra.00210-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023] Open
Abstract
We performed deep metagenomic sequencing on hydrocarbon-degrading marine microcosms designed to experimentally determine the effect of photo-oxidation on oil biodegradation dynamics. Assembly, binning, and dereplication yielded 73 unique metagenome-assembled genomes (MAGs) from 6 phyla, of which 61 are predicted to be over 90% complete.
Collapse
Affiliation(s)
- Shelby J. Barnes
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Raven C. Althouse
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California, USA
| | - Bianca F. Costa
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California, USA
| | - Boyan Hu
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Maxim Kovalev
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Timur Kulik
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Yu-Tung Lee
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Meredith C. Moore
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Emily Peng
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jing Yao Pook
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Akshita Sharma
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Celia Wood
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Eric A. Webb
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Hannah Sterling
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, Rhode Island, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - Christoph Aeppli
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - J. Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Alloy MM, Finch BE, Ward CP, Redman AD, Bejarano AC, Barron MG. Recommendations for advancing test protocols examining the photo-induced toxicity of petroleum and polycyclic aromatic compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106390. [PMID: 36709615 PMCID: PMC10519366 DOI: 10.1016/j.aquatox.2022.106390] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Photo-induced toxicity of petroleum products and polycyclic aromatic compounds (PACs) is the enhanced toxicity caused by their interaction with ultraviolet radiation and occurs by two distinct mechanisms: photosensitization and photomodification. Laboratory approaches for designing, conducting, and reporting of photo-induced toxicity studies are reviewed and recommended to enhance the original Chemical Response to Oil Spills: Ecological Research Forum (CROSERF) protocols which did not address photo-induced toxicity. Guidance is provided on conducting photo-induced toxicity tests, including test species, endpoints, experimental design and dosing, light sources, irradiance measurement, chemical characterization, and data reporting. Because of distinct mechanisms, aspects of photosensitization (change in compound energy state) and photomodification (change in compound structure) are addressed separately, and practical applications in laboratory and field studies and advances in predictive modeling are discussed. One goal for developing standardized testing protocols is to support lab-to-field extrapolations, which in the case of petroleum substances often requires a modeling framework to account for differential physicochemical properties of the constituents. Recommendations are provided to promote greater standardization of laboratory studies on photo-induced toxicity, thus facilitating comparisons across studies and generating data needed to improve models used in oil spill science.
Collapse
Affiliation(s)
- Matthew M Alloy
- Office of Research and Development, US EPA, Cincinnati, OH, USA.
| | - Bryson E Finch
- Department of Ecology, State of Washington, Lacey, WA, USA
| | - Collin P Ward
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | | | - Mace G Barron
- Office of Research & Development, US EPA, Gulf Breeze, FL, USA
| |
Collapse
|